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ПРЕДИСЛОВИЕ 

 

Настоящее пособие предназначено для студентов направления 

"Системный анализ и управление", изучающих курс физики в 

течение трех семестров. Данный выпуск является четвертой частью 

курса и рассматривает макроскопические физические системы. К 

таким системам относятся в первую очередь системы и процессы, 

описываемые в рамках молекулярной и статистической физики, а 

также системы, построенные с использованием аппарата квантовой 

механики. 

Как уже упоминалось в предисловии к первой части курса, 

системный подход к традиционному фундаментальному курсу 

физики дает возможность студентам этого направления с самого 

начала обучения увидеть общие закономерности в различных 

физических явлениях и процессах. Взгляд с позиций теории систем 

позволяет также проследить существенные связи и формальные 

аналогии между различными физическими и техническими 

системами, между физическими, космическими, биологическими, 

социальными и прочими явлениями. 

В этом смысле традиционный курс физики всегда был 

системной дисциплиной задолго до появления самого этого 

термина. 

К этой же категории относятся различные физические поля, 

рассматриваемые в курсе физики. 

Физические системы, рассматриваемые в настоящем курсе, 

служат методической основой для первоначального ознакомления с 

общими понятиями, математическим аппаратом и методами теории 

динамических систем. Они служат также для выработки общего (т.е. 

системного) взгляда на различные аспекты природы и техники. 
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Глава 1. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ 

ВЕЩЕСТВА 
 

1.1. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА 

 

Молекулярная физика изучает строение и свойства вещества, 

исходя из молекулярно-кинетических представлений. По этим 

представлениям, любое тело (твердое, жидкое или газообразное) 

состоит из большого числа молекул или атомов. Целый ряд явлений 

доказывает, что эти частицы находятся в беспорядочном 

непрерывном движении. Примеры этого: расширение газа в сосуде, 

испарение жидкости, диффузия и т.п. 

Молекулярно-кинетическая теория объясняет свойства тел, 

которые наблюдаются на опыте (давление, температура и т. д.), как 

суммарный результат взаимодействия молекул. При этом, если в 

механике изучалась простейшая форма движения – относительное 

перемещение тел, то в молекулярной физике изучается 

молекулярное движение, не сводимое к механическому. Несмотря на 

то, что каждая частица движется по законам механики, свойства 

огромных собраний молекул не могут быть объяснены только 

простейшими механическими закономерностями. Поэтому для 

описания закономерностей молекулярного движения используются 

методы статистической физики, описывающие не движение 

отдельных молекул, а лишь такие средние величины, которые 

характеризуют движение огромной совокупности частиц. В 

зависимости от агрегатного состояния (газ, жидкость, твердое тело), 

вещество по-разному ведет себя при внешних воздействиях. 

Следовательно, при этом действуют межмолекулярные силы, т. е. 

силы взаимного притяжения и отталкивания между частицами. Эти 

силы действуют на ничтожно малых расстояниях порядка двух-трех 

диаметров молекул и с увеличением расстояния убывают до нуля. 

Таким образом, изучая свойства вещества, необходимо 

учитывать кроме теплового хаотического движения также и 

межмолекулярные силы. 

Изучение молекулярной физики проведем на простейшей мо-

дели – идеальном газе. Идеальный газ представляет собой 

совокупность материальных точек, не взаимодействующих между 

собой и обладающих лишь кинетической энергией. 
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Совокупность всех свойств тела будет называться состоянием 

тела. Величины, характеризующие состояние тела и изменяющиеся 

под влиянием внешних воздействий, называются параметрами 

состояния. Состояние данной мacсы идеального газа 

характеризуется тремя параметрами: объемом V, температурой Т и 

давлением р. 

Если температура в разных точках тела неодинакова, то этому 

телу нельзя приписать определенную температуру. Такое состояние 

называется неравновесным. Это же относится и к давлению. Если 

тело предоставить самому себе и изолировать от других тел, то эти 

параметры выравниваются. 

Состояние системы, при котором все параметры системы 

имеют определенные значения, остающиеся при изменении внешних 

условий постоянными сколь угодно долго, называется равновесным 

состоянием. 

Связь между параметрами состояния устанавливается урав-

нением состояния идеального газа. Выведем это уравнение на 

основе опытных газовых законов. 

Рассмотрим общий случай изменения состояния газа, когда 

постоянной остается масса газа m. Для этого объединим закон Гей-

Люссака и Бойля-Мариотта и рассмотрим процесс перехода газа из 

одного состояния в другое по схеме: сначала изотермический 

переход из состояния 1 в состояние 

1', а затем изохорический переход 

из состояния 1' в состояние 2. В 

состоянии 1 параметры газа p1, V1 , 

Т1 , в состоянии 2 – p2, V2, Т2 (рис. 

1.1). 

Точки системы, находящейся 

в состояниях 1 и 1',лежат на одной 

и той же изотерме, поэтому на 

основании закона Бойля-Мариотта 

можно записать 

           V'pVp 211  .               (1.1) 

Точки, определяющие 

состояния 1' и 2, принадлежат одной Рис. 1.1 
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изохоре, поэтому 

T

T

p

'p

2

1

2

 .                                           (1.2) 

Исключим давление р' из (1.1) и (1.2), тогда 

T

Vp

T

Vp

2

22

1

11  . 

Обобщая, получим объединенный газовый закон Клапейрона 

C
T

pV
 const .                                     (1.3) 

Здесь С – постоянная для данной массы газа величина. 

Для определения постоянной С воспользуемся законом 

Авогадро, согласно которому грамм-молекулы всех газов занимают 

при одинаковых условиях (одинаковых температуре, давлении) один 

и тот же объем. Отсюда следует, что если количество газа равно 

одному молю, то значение С для всех газов будет одинаково. 

Приняв в уравнении (1.3) C = R, можно для одного моля газа 

записать 

pV
R

T


 ,                                               (1.4) 

где R – универсальная газовая постоянная. Подсчитаем в системе 

СИ величину универсальной газовой постоянной R, исходя из 

условий нормального состояния газа 

р = 1,01·10
5
 Па; 

V= 22,4 ·10
-3

 м
3
/моль; 

T = 0°С = 273 К; 

 5 31,01 10 22,4 10 Дж
8,31

273 моль×К
R

 
  . 

Обобщим уравнение (1.4) на случай произвольной массы газа 

m. В этой массе содержится 


m  молей газа. Соответственно, во 
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столько же раз возрастает величина р, поэтому для произвольной 

массы идеального газа имеем 

m
p RTV 



.                                            (1.5) 

Это и есть уравнение состояния идеального газа, включающее 

все его параметры. Оно известно как уравнение Менделеева-

Клапейрона. 

 
1.2. ОСНОВНОЕ УРАВНЕНИЕ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ 

ТЕОРИИ ГАЗОВ 

 

Это уравнение устанавливает связь между макроскопическим 

параметром (давлением газа в сосуде) и микроскопическим 

параметром – средней кинетической энергией газовых молекул. При 

этом молекулы газа считаются упругими шариками. 

Если считать столкновение молекул газа со стенками абсо-

лютно упругим, то давление на стенки сосуда определится ударами 

частиц, отскакивающих от стенок без изменения величины скорости. 

Вследствие хаотичности движения частиц, число ударяющихся 

частиц и их скорости будут в отдельные моменты времени различны. 

С молекулярно-кинетической точки зрения давление, оказываемое 

газом на стенки сосуда, представляет собой средний импульс силы от 

ударов молекул газа, приходящийся в единицу времени на единицу 

площади стенки. 

Вывод уравнения приближенный и использует ряд допуще-

ний. 

1. Движение молекул газа происходит только в трех взаимно 

перпендикулярных направлениях. Это допущение несколько снижает 

число молекул, соударяющихся со стенкой. 

2. В каждом из направлений движется 1/3 всех молекул. 

3. При каждом ударе молекул газа о стенку они передают ей 

импульс. При этом считается, что движение молекулы нормально 

относительно стенки и удар абсолютно упругий. На самом же деле 

скорости молекул могут быть направлены и под углом к стенке 

сосуда. Это предположение, таким образом, завышает результат. 
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Строгий вывод показывает, что эти допущения как бы 

компенсируют друг друга, поэтому результат в приближенном вы-

воде получается правильный. 

Мысленно выделим внутри газа объем в виде куба со стороной 

a. Для определения давления газа на стенки сосуда рассмотрим 

результат ударений о стенку молекул, движущихся в направлении оси 

х (рис. 1.2). 

Вначале определим силу от удара одной молекулы о стенку, 

воспользовавшись законами классической механики, а затем оценим 

среднюю силу удара за единицу времени всех молекул, движущихся 

вдоль оси х. 

На основе второго закона Ньютона определим импульс, 

получаемый стенкой при столкновении с ней молекулы газа. 

Импульс силы, действующей на материальную точку, равен 

изменению ее количества движения 

 vmt F .                                             (1.6) 

Изменение количества движения точки за 1 секунду численно 

определяет силу, действующую на нее 

 vmF .                                              (1.7) 

При упругом ударе частицы о стенку перпендикулярно к ней 

численное значение скорости сохраняется, а направление этой 

скорости изменяется на противоположное, т. е. изменение импульса 

частицы определится так 

  vvvv mmmm 2 .    (1.8) 

При этом в силу третьего 

закона Ньютона стенка 

получает при ударе каждой 

частицы импульс 

P'=2mυ.          (1.9) 

Пусть в сосуде 

содержится N молекул, причем 

столкновения между ними не 

учитываются.  

Рис.1.2 
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Если за один удар молекула передает стенке импульс 2mυ, то 

суммарный импульс, получаемый стенкой за 1 секунду, определится 

произведением импульса от одного удара на число ударов z в секунду, 

т.е. 

P'z = 2mυz.                                    (1.10) 

Подсчитаем z. Рассмотрим только те молекулы, которые 

переносятся в объеме по направлению оси x от левой грани к правой 

и обратно. Время между двумя ударами о правую грань 

v

a2
 ,                                             (1.11) 

где υ – скорость молекулы, а число соударений в 1 секунду 




1
z , 

т.е. 

a
z

2

v
 .                                          (1.12) 

Тогда сила удара одной молекулы о стенку за 1 секунду равна 

a

m

a
mF

vv
v

2

2
2  .                                  (1.13) 

Однако за 1 секунду о правую грань ударяется  
3

N
'N   всех 

молекул. Тогда средняя сила удара за 1 секунду всех N' молекул 

будет 

 

2 2 2 2
1 2 '

2 2 2 2
1 2 '

..... .....

..... ..... .

i N

i N

m m m m
F

a a a a

m

a

       

    

v v v v

v v v v

            (1.14) 

Так как молекулы обладают разными скоростями, а число 

молекул огромно, то можно ввести понятие о среднем квадрате 

скорости и средней кинетической энергии поступательного 

движения молекулы 
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' ' 2

2

2 1 1
пост

2
;

' '

N N
i

i

i i

m

E
N N

    
 v

v

v .                        (1.15) 

Подставив (1.15) в (1.14), получим 

2

пост

2
'

3

Nm
F N E

a a


    

v . 

Тогда среднее давление p на стенку будет 

пост пост22

2 2

3 3

F N
p nЕ E

aa

 
     

, 

где n = N/a
2
 – число частиц в единице объема, а <Епост> – средняя 

кинетическая энергия поступательного движения молекул газа.  

Таким образом, соотношение 

пост

2

3
p n E                                         (1.16) 

есть основное уравнение молекулярно-кинетической теории газов, 

которое устанавливает связь между макроскопическим параметром – 

давлением и микроскопическим – средней кинетической энергией 

молекул газа. 

 
1.3. СЛЕДСТВИЯ ИЗ ОСНОВНОГО УРАВНЕНИЯ 

 

1. Установим связь между средней кинетической энергией 

молекул и абсолютной температурой газа. 

Преобразуем формулу основного уравнения (1.16), умножив 

левую и правую ее части на объем одного моля газ 

пост

2

3
p nV VE 

   .                                 (1.17) 

Здесь nV – число частиц в одном моле, равное числу Авогадро, т.е. 

nV = NА. 

Тогда 
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пост

2

3
ApV N E

   .                             (1.18) 

Сравним полученную формулу с формулой 

pV = RT. 

Тогда 

пост

2

3
A RTN E  , 

следовательно, 

пост

3

2 A

R
TE

N
 

.                                  (1.19) 

Отношение двух постоянных R/NA = k представляет собой 

постоянную Больцмана. 

Перепишем выражение (1.19) таким образом 

пост

3

2
kTE  .                                     (1.20) 

То есть средняя кинетическая энергия поступательного движе-

ния молекул идеального газа пропорциональна абсолютной тем-

пературе. 

Значение постоянной Больцмана легко подсчитать, подставив 

значения констант 

23

23

8,31
Дж / К1,38 10

6,02 10
k


  



. 

Из формулы (1.20) ясен физический смысл абсолютной 

температуры: она является количественной мерой средней 

кинетической энергии поступательного движения молекул. 

Как следует из формулы (1.20), при температуре, равной нулю, 

кинетическая энергия молекул также равна нулю. Однако это не 

означает, что всякое движение молекул газа прекращается. При 

низких температурах электроны продолжают движение вокруг ядер. 

Таким образом, абсолютный нуль означает не отсутствие движения, а 

такое состояние вещества, при котором дальнейшее уменьшение 

интенсивности движения атомов и молекул вследствие отдачи 
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энергии окружающим телам невозможно. При низких температурах, 

когда уменьшается влияние теплового движения на процессы, 

протекающие в веществе, можно ожидать возникновения новых 

свойств и явлений (сверхпроводимость, сверхтекучесть). 

Кинетическая энергия поступательного движения всех частиц 

NA , содержащихся в одном моле газа, определится так 

RTkTNE A
2

3

2

3
 

.                                (1.21) 

Для произвольной массы газа m, содержащей (m/) молей 

pVRT
m

E
2

3

2

3





.                                (1.22) 

2. Получим теперь выражение, связывающее величину 

среднего давления газа с его температурой. В формулу основного 

уравнения (1.16) подставим значение кинетической энергии из 

формулы (1.20) 

nkTkTnp 
2

3

3

2 ,                                 (1.23) 

т.е. давление газа пропорционально его температуре. 

Предположим, что имеется газовая смесь в единице объема 

содержащая n1 молекул одного газа, n2 – второго, n3 – третьего и т.д. 

Всего имеется N типов молекул. Так, например, воздух состоит из 

молекул кислорода, азота, углекислого газа и т.д. 

Тогда общее число молекул в единице объема равно 

1 2 3
.....

Nn n n n n    .                               (1.24) 

Подставим значение n в формулу (1.23) 

2 31
..... )( Nn n n kTp n   .                         (1.25) 

Раскрывая скобки и производя почленное умножение, 

получим 

pkTn

pkTn





22

11 .                                       (1.26) 
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Давления p1, р2,.. .рN называются парциальными давлениями
1
. 

Давление, обусловленное молекулами какого-либо одного газа 

при условии, что только молекулы этого газа присутствуют в сосуде 

в том количестве, в каком они содержатся в смеси, называется 

парциальным давлением. 

Формулу (1.25) перепишем в виде 





N

i
iN pp.....pppp

1
321

.                   (1.27) 

Формула (1.27) выражает закон Дальтона: давление смеси 

идеальных газов равно сумме парциальных давлений газов, об-

разующих смесь. 

 
1.4. ВНУТРЕННЯЯ ЭНЕРГИЯ СИСТЕМЫ И ЗАКОН 

РАВНОМЕРНОГО РАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ПО СТЕПЕНЯМ 

СВОБОДЫ 

 
ВНУТРЕННЯЯ ЭНЕРГИЯ СИСТЕМЫ 

 

В понятие внутренней энергии системы (например, некоторой 

массы газа) включается кинетическая энергия хаотического 

движения молекул, потенциальная энергия взаимодействия между 

молекулами и внутримолекулярная энергия. 

При рассмотрении идеального газа пренебрегают потен-

циальной энергией взаимодействия молекул и внутримолекулярной 

энергией, а под внутренней энергией идеального газа понимают 

суммарную кинетическую энергию теплового движения его 

молекул. 

Существенно, что внутренняя энергия является функцией 

состояния. Это означает, что внутренняя энергия системы, которая 

находится в данном состоянии, принимает присущее этому 

состоянию значение независимо от того, что происходило в системе 

ранее. Следовательно, изменение внутренней энергии при переходе 

системы из одного состояния в другое будет всегда равно разности 

значений внутренней энергии в этих состояниях независимо от 

пути, по которому совершается переход. 

                                                           
1
 Англ. partial, франц. partiel – частичный. 



 14 

ЗАКОН РАВНОМЕРНОГО РАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ПО СТЕПЕНЯМ 

СВОБОДЫ 

 

Как было показано ранее, средняя кинетическая энергия 

поступательного движения одной молекулы идеального газа, 

которую мы считали материальной точкой, равна 3/2 kT, то есть 

прямо пропорциональна температуре газа. 

При рассмотрении двухатомных, трехатомных и 

многоатомных молекул кроме поступательного движения следует 

учитывать также вращательное и колебательное движение молекул 

газа. 

Для подсчета энергии, 

идущей на все виды 

движения, вводится понятие 

числа степеней свободы. 

Под числом степеней 

свободы тела 

подразумевается 

минимальное число 

независимых координат, 

которое необходимо задать 

для того, чтобы полностью 

определить положение тела 

в пространстве. 

Модель молекулы одноатомного газа – материальная точка, 

для описания ее положения в пространстве задаются 3 координаты, 

т.е. 3 степени свободы. 

При рассмотрении модели 

молекулы двухатомного газа в виде двух 

жестко связанных материальных точек 

(жесткая гантель) – (рис. 1.3) – 

необходимо задать 3 координаты центра 

тяжести для описания поступательного 

движения и 2 степени свободы для 

описания вращательного движения 

относительно двух взаимно 

перпендикулярных осей, не 

совпадающих с осью молекулы. 

Рис. 1.3 

Рис. 1.4 



 15 

Итак, двухатомная молекула имеет i = 5 степеней свободы. 

Для трехатомных и многоатомных жестких молекул (рис. 1.4), 

как и для твердого тела произвольной формы, общее число степеней 

свободы i = 6; из них 3 степени свободы приходятся на 

поступательное движение центра тяжести и 3 – на вращательное 

движение относительно осей х, у, z . 

При столкновении молекул друг с другом в процессе их теп-

лового движения энергия поступательного движения молекул может 

переходить в энергию их вращательного движения и наоборот. При 

этом, согласно статистике, в среднем количество обоих видов 

энергии должно быть одинаковым при расчете на каждую степень 

свободы. 

Считая все виды движения равновероятными, и предполагая, 

что ни один из видов движения не имеет преимущества перед дру-

гими, можно принять, что количество энергии, приходящееся на 

одну степень свободы равно 

пост

1 ст.св.

3
12

3 3 2

kT
E

kTE
 

    . 

В классической физике закон равномерного распределения 

энергии по степеням свободы утверждает: если система молекул 

находится в тепловом равновесии при температуре Т, то 

кинетическая энергия в среднем равномерно распределена между 

всеми степенями свободы и для каждой степени свободы равна 1/2 

kT. 

Если молекула имеет i степеней свободы, то ее средняя энергия 

равна 

2

i
E kT  .                                        (1.28) 

Внутренняя энергия идеального газа определяется как сум-

марная кинетическая энергия всех его молекул. Для одного моля 

газа она равна 

RT
i

kT
i

NU a
22


.                              (1.29) 



 16 

Внутренняя энергия произвольной массы газа равна 

RT
im

U
2

 .                                      (1.30) 

 
1.5. ТЕПЛОЕМКОСТЬ ГАЗОВ 

 

Рассмотренная модель идеального газа позволяет установить 

некоторые закономерности для внутренней энергии газа, но 

непосредственно измерить эту энергию не представляется 

возможным. Поэтому экспериментально измеряют величину, 

косвенно связанную с внутренней энергией. Изменение 

температуры вызывает пропорциональное изменение внутренней 

энергии. Коэффициентом пропорциональности служит 

теплоемкость. Из курса физики средней школы известно, что для 

повышения температуры тела, масса которого равна m, на величину 

ΔT необходимо затратить количество тепла 

Q = cmT,                                       (1.31) 

где с – удельная теплоемкость вещества. 

Под удельной теплоемкостью подразумевают физическую 

величину, численно равную количеству тепла, которое необходимо 

сообщить веществу, масса которого равна единице, для нагревания 

этого количества вещества на T = 1 К. 

Для одного моля газа вводится молярная теплоемкость C. 

Под молярной теплоемкостью подразумевается физическая 

величина, численно равная количеству тепла, которое необходимо 

сообщить одному молю этого вещества, чтобы поднять его 

температуру на 1 К. 

Для нагревания нескольких молей газа на один Кельвин 

необходимое количество тепла 

TC
m

Q 


 
.                                      (1.32) 

Сравнивая (1.31) и (1.32), получаем соотношение между 

удельной и молярной теплоемкостями 
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С=с .                                            (1.33) 

Величина теплоемкости газа зависит от условий, при которых 

она измеряется. Нагрев может идти при постоянном объеме или при 

постоянном давлении, и при этом теплоемкости называются 

соответственно теплоемкостью при постоянном объеме CV и 

теплоемкостью при постоянном давлении СP. 

Рассмотрим нагревание одного моля газа при этих условиях. 

1) V = const. 

Если газ нагревается при постоянном объеме, то тепло, подводи-

мое к газу, идет лишь на его нагревание, т.е. на увеличение внутренней 

энергии, поскольку работа против действия внешних сил не 

производится 

UQ  
. 

Учитывая формулу (1.32), имеем 

TC
m

U V 


 
.                                    (1.34) 

Если при этом положить m/μ = 1, то из (1.34) следует 

T

U
CV









.                                           (1.35) 

Принимая во внимание формулу (1.29), полученную для 

внутренней энергии, из которой следует, что 

TR
i

U  
2

,                                        (1.36) 

на основе (1.35) получим 

R
i

CV
2


;              




Ri
ÑV

2

.                            (1.37) 

Молярная теплоемкость газа при постоянном объеме опреде-

ляется числом степеней свободы его молекул и газовой постоянной. 

По классической теории, теплоемкость газа не зависит от 

температуры. 

2) p = const. 
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При нагревании газа при постоянном давлении этот газ 

расширяется. Сообщаемое ему тепло идет не только на увеличение 

его внутренней энергии, но и на совершение работы против сил 

внешнего давления. Таким образом, теплоемкость СP должна быть 

выше теплоемкости CV на величину, равную работе A, которую 

совершает один моль газа при расширении 

p VC C A    .                                   (1.38) 

Для определения величины этой 

работы рассмотрим 1 моль газа, 

находящийся при температуре Т и 

давлении р в цилиндре с поршнем, 

площадь  которого равна S (рис.1.5). 

Работа A, которая совершается 

против действия сил внешнего 

давления при перемещении поршня на 

малое расстояниеl и при 

соответствующем увеличении объема 

газа на величину V за счет 

подводимого тепла Qp определится так 

A = Fl = pSl = pV.                               (1.39) 

Увеличение объема газа найдем из уравнения состояния иде-

ального газа 

pV  = RT,                                          (1.40) 

т.е. согласно (1.39) 

A = A = RT.                                                 (1.41) 

Таким образом, при нагревании 1 моля газа при постоянном 

давлении на 1 Кельвин, работа численно равна универсальной 

газовой постоянной 

A = R.                                             (1.42) 

Подставляя (1.42) в (1.38), получим 

Cp = CV + R.                                      (1.43) 

Рис. 1.5 
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Следовательно, 

R
i

RR
i

C p
2

2

2




,  (1.44) 







Ri
c p

2

2 .         (1.45) 

Молярная теплоемкость 

газа при постоянном давлении 

определяется также числом 

степеней свободы газа и 

универсальной газовой 

постоянной. 

Разделив (1.44) на (1.37), 

получим отношение 

теплоемкостей при постоянном давлении и при постоянном объеме, 

характерное для каждого газа 

i

i

C

C

V

p 2
 .                                      (1.46) 

Это отношение является характеристикой газа и зависит 

только от числа степеней свободы молекул, из которых состоит газ. 

Поэтому для различных по своему химическому составу, но 

имеющих одинаковое число атомов в молекулах газов это 

отношение одинаково. Так, например, молекулы двухатомных газов, 

таких, как кислород, водород, азот и т. д., имеют в составе одной 

молекулы два атома, поэтому для всех этих газов 

41
5

25
,


 . 

Для одноатомных газов таких, как неон, аргон и т.д., 

671
3

23
,


 . 

Рассмотренная классическая теория теплоемкости предпола-

гает, что теплоемкость не зависит от температуры. Однако опыт 

показывает, что температурная зависимость все-таки имеет место. 

Рис. 1.6 
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Рассмотрим экспериментальную кривую зависимости моляр-

ной теплоемкости CV от температуры для молекулы водорода 

(рис.1.6).  

На участке 1 – 1' теплоемкость СV равна 3/2R. Это значит, что 

молекула ведет себя как система, обладающая только 

поступательными степенями свободы. При температурах на участке  

2 – 2', где теплоемкость равна 5/2R, в дополнение к поступательным 

степеням свободы появляются две вращательные. При еще более 

высоких температурах (участок 3 – 3') проявляются колебания 

атомов в молекулах. В промежутках между этими интервалами 

теплоемкость монотонно растет одновременно с температурой. 

Участки роста CV свидетельствуют о переменном числе сте-

пеней свободы, которое, как видно из кривой, зависит от тем-

пературы. При низких температурах имеет место только по-

ступательное движение, а при более высоких появляется вращение 

молекул. Как следует из плавного хода кривой, во вращательное и 

колебательное движение вовлекаются не все молекулы сразу, а их 

число с температурой растет постепенно. 

Объяснение такой зависимости теплоемкости дает квантовая 

механика, согласно которой энергия вращательного и колеба-

тельного движений молекул квантована. Это означает, что эти 

энергии могут иметь не любые, а только дискретные значения. 

Следовательно, энергия, связанная с этими видами движения, может 

меняться только скачками. Для энергии поступательного движения 

таких ограничений нет. 

 
1.6. АДИАБАТА ИДЕАЛЬНОГО ГАЗА 

 

Адиабатическим называется процесс, протекающий без 

теплообмена с окружающей средой. При адиабатическом процессе 

система не получает тепла извне и не отдает тепло окружающим 

телам. Поэтому система должна быть окружена стенками, не 

проводящими тепло. Так как это условие осуществить нельзя, то 

всякий реальный процесс может происходить лишь как 

приближенный к адиабатическому. На практике, близкими к 

адиабатическому оказываются процессы, протекающие настолько 

быстро, что обмен теплом с внешней средой не успевает произойти. 
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Найдем уравнение, связывающее параметры газа при 

адиабатическом процессе. Математически адиабатический процесс 

выражается в том, что в законе сохранения энергии суммарное 

количество тепла, подводимое к газу, расходуется на нагревание 

газа при постоянном объеме, т.е. на изменение внутренней энергии 

газа и на работу по изменению объема. Так как величина 

подводимого тепла равна нулю, то работа может производиться 

только за счет изменения внутренней энергии газа 

dU + dA = 0, 

т.e  

dA = -dU.                                          (1.47) 

Если газ совершает положительную работу, то его внутренняя 

энергия убывает. Если внешние силы совершают работу над газом, 

то его внутренняя энергия увеличивается. 

Рассмотрим процесс адиабатического расширения идеального 

газа. 

Известно, что работа, совершаемая газом при расширении, равна 

dA = pdV.                                           (1.48) 

Изменение внутренней энергии одного моля идеального газа, 

как было показано выше, равно 

RdT
i

dU
2

 .                                         (1.49) 

Вводя молярную теплоемкость газа при постоянном объеме, 

формула (1.49) примет вид 

dTCRdT
i

dU V
2

.                                 (1.50) 

Подставим (1.48) и (1.50) в (1.47) 

CVdT + pdV = 0.                                     (1.51) 

Выразим давление р из уравнения состояния идеального газа при 

m/μ = 1 
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V

RT
p   

и подставим полученное выражение в (1.51) 

0 dV
V

RT
dTCV

.                                  (1.52) 

Преобразуем (1.52) к виду 

0
 V

dV

C

R

T

dT

V

. 

Полученное выражение можно записать в таком виде 

ln ln 0
V

R
d T V

C 

 
  

 

.                                 (1.53) 

Откуда следует 

ln ln const
V

R
T V

C 

 
.                                (1.54) 

Рассмотрим коэффициент, стоящий перед lnV. Поскольку 

R
i

R
i

CC Vp
22

2



 

, 

то 

11 











 C

C

C

CC

C

R

V

p

V

Vp

V

.                      (1.55) 

Тогда можно (1.54) переписать так 

1 constTV
  .                                       (1.56) 

Формула (1.56) представляет собой уравнение 

адиабатического процесса в переменных Т и V. Если в этой формуле 

выразить температуру Т из уравнения состояния идеального газа, то 

получим уравнение адиабаты в переменных р и V или уравнение 

Пуассона 

PV
 
= const.                                         (1.57) 
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Сравним изотермическое и адиабатическое изменения со-

стояния газа. Для изотермического процесса характерно непре-

рывное поступление тепла извне, которое полностью компенсирует 

изменение внутренней энергии при совершении газом работы. То 

есть изотермическое изменение объема газа возможно при идеально 

хорошем обмене теплом с внешними телами. Адиабатическое 

изменение объема возможно при идеально хорошей тепловой 

изоляции. Работа газа совершается за счет его внутренней энергии. 

При расширении газ охлаждается, при сжатии – нагревается. 

Уравнение изотермического процесса выражается законом Бойля-

Мариотта 

pV = const,                                         (1.58) 

а формула (1.57) представляет собой уравнение адиабатического 

процесса. Если изобразить оба эти процесса графически, то кривая 

адиабаты пойдет круче, чем кривая изотермы (рис. 1.7). В точке M 

обе кривые пересекаются. 

 

 

Рис. 1.7 

Заметим, что поскольку кривая изотермы соответствует 

процессу, проходящему при постоянной температуре, то 

адиабатическое расширение сопровождается понижением 

температуры, а адиабатическое сжатие – повышением температуры. 

Поэтому участок адиабаты выше точки M (т.е. при больших, чем в 

этой точке, значениях объема) лежит ниже изотермы, а участок 

адиабаты, соответствующий значениям объема, меньшим чем в 



 24 

точке M, лежит выше изотермы. На рис.1.8 представлены та же 

изотерма и две адиабаты – для двухатомного газа ( = 1,4) и для 

одноатомного газа ( = 1,67). Видно, что последняя адиабата идет 

круче первой. 

 

Рис. 1.8 

Реальные процессы не носят строго изотермического или 

адиабатического характера, так как невозможно осуществить ни 

идеальный обмен теплом, ни полную тепловую изоляцию. Реальные 

процессы носят промежуточный характер между изотермическим и 

адиабатическим. 

 
1.7. ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ФИЗИКИ 

 
РАСПРЕДЕЛЕНИЯ МАКСВЕЛЛА И БОЛЬЦМАНА МОЛЕКУЛ 

ИДЕАЛЬНОГО ГАЗА 

 

Законы механики, применяемые для систем частиц в условиях 

теплового равновесия, получили название статистической ме-

ханики. 

Одно из положений статистической механики нам известно. 

Это положение о том, что при некоторой температуре энергия, 

приходящаяся на каждую степень свободы, равна 1/2kT. 

Кроме того, из основного уравнения молекулярно-

кинетической теории газов можно определить среднюю 

квадратичную скорость молекул газа 
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2
кв

3 3kT RT

m
  


v v

,                  (1.59) 

где m – масса одной молекулы газа, а  – молярная масса этого газа. 

Таким образом, скорость молекул газа зависит от темпера-

туры. Экспериментальное определение скоростей молекул было 

осуществлено в опыте Штерна (рис. 1.9). 

Два коаксиальных цилиндра находятся в 

вакууме, вдоль их оси натянута платиновая 

нить, покрытая серебром. При нагревании нити 

серебро испаряется. Во внутреннем цилиндре 

имеется щель, через которую проникают атомы 

серебра и оседают на внешнем цилиндре, 

образуя узкую полоску. 

При вращении цилиндров с постоянной 

угловой скоростью след пучка смещается на 

величину s, так как за время пролета атомов 

цилиндр успевает повернуться на некоторый 

угол. Измерив смещение s и скорость 

вращения , можно подсчитать скорость 

атомов. Так как скорости атомов различны, то 

профиль следа атомов имеет неравномерную 

толщину.  

Исследуя профиль, можно составить 

примерное представление о распределении 

атомов по скоростям. Толщина слоя 

максимальна в центре и убывает по краям. Это 

означает, что одни значения скорости встречаются чаще, другие – 

реже. Отсюда следует, что, несмотря на хаотическое тепловое 

движение частиц, в их распределении по скоростям имеется 

определенная закономерность. 

Анализируя результаты опыта Штерна, можно заметить, что 

большинство атомов имеют скорости, значения которых лежат в 

пределах очень узкого интервала, характерного для данной 

температуры. 

Вероятность обнаружить другие значения скорости быстро 

убывает в сторону больших и меньших значений. Это 

Рис.1.9 
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свидетельствует о том, что существует некоторая статистическая 

закономерность распределения молекул по скоростям.  

Опыт показывает, что при каждом значении температуры Т 

существует наиболее вероятная скорость vВ, с которой движется 

большинство молекул. Молекулы, скорости которых много больше 

или много меньше наиболее вероятной, встречаются редко. Таким 

образом, действительно существует некоторая статистическая 

закономерность распределения молекул по скоростям. 

Впервые закон распределения молекул газа по скоростям (и по 

кинетическим энергиям) был получен Максвеллом на основе теории 

вероятности. 

Вводя функцию распределения 

v
v

Nd

dN
)(f  , 

характеризующую относительное число молекул dN/N, скорости 

которых лежат в заданном интервале от v  до v+dv , математически 
закон Максвелла можно записать так 

 
3 2

2
22( ) 4

2

m

kT
m

f e
kT



 


v

v v ,                            (1.60) 

где m – масса одной молекулы; k – постоянная Больцмана; T – 

абсолютная температура. 

Откладывая по оси абсцисс значения скоростей молекул v , а 

по оси ординат f(v ), получим графическое выражение функции 

распределения Максвелла (рис. 1.10). 

Относительное число молекул ΔN/N, для которых значения 

скоростей находятся в заданном интервале от v  до ( v +v ), 

численно равно площади прямоугольника, заштрихованного на рис. 

1.10. 

Скорость, соответствующая максимальному значению функ-

ции распределения f(v), называется наиболее вероятной скоростью 

vВ. Её можно найти, если продифференцировать формулу (1.60) и 

приравнять полученную производную нулю 







RT
,

RT

m

kT
В

411
22

v .                       (1.61) 
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Закону Максвелла (1.61) можно придать другой вид, если 

вместо скорости в качестве переменной взять кинетическую 

энергию 
2

2
vm

EК 
. Тогда выражение 

 
 

3 2

2 К

К
К

К

kT

EdN
f eE E

NdE kT



   
                       (1.62) 

будет характеризовать функцию распределения молекул, значения 

кинетической энергии которых находятся в заданном интервале от 

EК
 до ( EE КК  ). 

Из выражений (1.60) – (1.62) следует, что вид функции 

распределения зависит от температуры и массы молекул. 

С увеличением температуры максимум кривой функции 

распределения 

kT

m

e
)(f max




2

4
v

 

смещается вправо и становится ниже. Это означает, что число 

быстрых молекул увеличивается, а медленных – уменьшается 

(рис.1.11), при этом площадь, ограниченная сверху кривой, не 

изменяется, так как число молекул не меняется. 

Графики функции распределения молекул кислорода по их 

скоростям, рассчитанные по формуле (1.60), приведены на рис. 1.10 

и 1.11. Рисунок 1.10 соответствует температуре 300 К. 

 

Рис.1.10 
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Три кривые, изображенные на рис.1.11, соответствуют трем 

различным температурам – 300, 600 и 900 К. По оси абсцисс 

отложены скорости молекул в м/c. Можно видеть, что наиболее 

вероятная скорость, соответствующая максимуму распределения, с 

ростом температуры увеличивается в соответствии с формулой 

(1.61). 

Больцман обобщил закон Максвелла на случай, когда моле-

кулы движутся в поле силы тяжести (в общем случае – в любом 

силовом поле). При этом кинетическую энергию в формуле (1.62) 

следует заменить на полную энергию молекул Е = ЕK+ЕP, где ЕP – 

потенциальная энергия. Так как потенциальная энергия зависит от 

координат, то приходится говорить о числе молекул, для которых 

ограничены в определенном интервале не только скорости, но и 

координаты которых также ограничены внутри определенного 

интервала.  

 

Рис. 1.11 

Окончательно закон распределения Максвелла-Больцмана примет 

вид 

 
3 2

0
2

E

kT
x y z

m
n x y zN

kT
e


      


v v v

.            (1.63) 

Существенно, что законы Максвелла и Больцмана справед-

ливы для равновесного состояния идеального газа и выполняются 

тем точнее, чем больше число молекул N. 
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1.8. РЕАЛЬНЫЕ ГАЗЫ. УРАВНЕНИЕ ВАН-ДЕР-ВААЛЬСА 

 

Идеальный газ, для которого нами рассмотрены основные 

законы, представляет собой совокупность невзаимодействующих 

молекул. Эта модель может быть принята и для реальных 

разреженных газов. С повышением давления свойства реальных 

газов начинают отличаться от свойств идеальных газов. 

Причина отличия свойств заключается в существовании сил 

отталкивания и притяжения между молекулами. Силы отталкивания 

возникают в связи с тем, что газовые молекулы имеют конечные 

размеры. Силы притяжения между молекулами вызывают изменение 

давления газа в сосуде. Эти силы были учтены Ван-дер-Ваальсом 

при выводе уравнения реального газа. Рассмотрим действие этих 

сил. 

 
СИЛА ОТТАЛКИВАНИЯ 

 

Молекулы газа, имеющие различные кинетические энергии, не 

могут сблизиться на расстояние меньше эффективного диаметра 

молекул. Поэтому часть объема оказывается недоступной для 

молекул газа. Эту недоступную часть объема нужно вычесть из 

общего объема сосуда. Обозначим эту часть объема через b и 

запишем уравнение состояния для одного моля газа с поправкой на 

этот объем 

p(V - b) = RT.                                   (1.64) 

Расчет показывает, что величина b равна учетверенному 

объему газовых молекул, содержащихся в одном моле. Размерность 

b равна размерности объема. 

 
СИЛА ПРИТЯЖЕНИЯ 

 

Сила взаимного притяжения между молекулами приводит к 

ослаблению интенсивности давления на стенки сосуда, поэтому 

давление реального газа следует уменьшить на величину р'. С 

учетом формулы (1.64) получим 
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'p
bV

RT
p 






.                                   (1.65) 

Для расчета можно воспользоваться следующими рассужде-

ниями. Давление газа определяется концентрацией частиц n в 

прилегающем к стенке слое газа. Сила притяжения со стороны 

соседнего слоя, рассчитанная на единицу площади, 

пропорциональна концентрации молекул в обоих слоях ~n
2
, т.е. 

пропорциональна квадрату плотности газа или обратно 

пропорциональна квадрату объема газа 

V
~p~n~'p

2

22 1 . 

Вводя коэффициент пропорциональности для одного моля, запи-

шем 

V

a
'p

2


 ,                                            (1.66) 

где а – коэффициент, зависящий от природы газа. 

Таким образом, уравнение, полученное Ван-дер-Ваальсом для 

одного моля реального газа, имеет вид 

  RTbV
V

a
p 














 


2

.                              (1.67) 

Если под р понимать внешнее давление, оказываемое на газ, 

то p' добавляется к внешнему давлению, т.е. газ как бы оказывается 

дополнительно сжатым. Для произвольной массы газа уравнение 

Ван-дер-Ваальса получается путем обобщения выражения (1.67), 

если это уравнение умножить на число молей m/μ. С учетом того, 

что 

V
m

V 


 , 

получим 
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Это и есть уравнение Ван-дер-Ваальса. Отметим, что это 

уравнение нельзя считать абсолютно точным, так как отсутствует 

способ точного определения сил взаимодействия между молекулами 

газа. 

 
 

ИЗОТЕРМЫ РЕАЛЬНЫХ ГАЗОВ 

 

Уравнение Ван-дер-Ваальса (1.68) является кубическим (т.е. 

уравнением третьей степени) относительно объема. Поэтому, в 

отличие от изотермы идеального газа, имеющей вид гиперболы, 

изотерма Ван-дер-Ваальса, т.е. кривая, соответствующая уравнению 

(1.68), имеет области с максимумом и минимумом, где каждому 

значению давления соответствуют три значения объема. Эта 

изотерма представляет собой, по существу, графическое решение 

уравнения (1.68). 

Семейство таких изотерм, рассчитанных по уравнению (1.68) 

для углекислого газа, находящегося при различных температурах, 

представлено на рис.1.12. Из этого графика видно, что 

действительно, имеется некоторая область, в которой одному 

значению давления соответствуют три значения объема. В этой 

области находятся изотермы, рассчитанные для температур 250, 270 

и 290 К.  

Однако уже при 310 К изотерма имеет лишь точку перегиба, 

но не имеет трех корней. Эта изотерма критическая и точка 

перегиба К называется критической точкой. Температура 

критической изотермы также называется критической 

температурой ТК. Все изотермы, находящиеся выше критической, 

перегибов не имеют и приближаются к изотермам идеального газа, 

описываемым обычным уравнением Клапейрона. 
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Рис. 1.12 

Для всех температур ниже критической на изотермах, 

построенных по уравнению Ван-дер-Ваальса, изгиб выражен тем 

резче, чем ниже температура. 

Однако экспериментальные изотермы отличаются от изотерм, 

представленных на рис.1.12. Противоречие между теоретическими и 

экспериментальными кривыми заключается в том, что последние 

вместо волнового изгиба имеют прямолинейный участок (рис.1.13). 

 

Рис. 1.13 

Действительно, в реальности не может такого быть, чтобы при 

одном и том же давлении вещество находилось в нескольких 

объемах. Что же происходит при температурах ниже критической? 

Горизонтальный участок изотермы b – d является областью 

фазового перехода, областью, в которой насыщенный пар находится 

в равновесии с жидкостью, и постепенно, по мере уменьшения 
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объема переходит в жидкую фазу. То есть, в этой области реальные 

изотермы совпадают с изобарами, и фазовый переход из 

газообразного состояния в жидкое происходит при постоянном 

давлении. Выше области фазового перехода, на участке е – d , мы 

имеем газ, сжимаемый легко – кривая идет полого. Ниже области 

фазового перехода, на участке b – a, кривая идет очень круто, что 

соответствует мало сжимаемой жидкости. 

Изгиб теоретической изотермы на участке b – d определяет 

неустойчивые, так называемые метастабильные состояния. Эти 

метастабильные состояния действительно существуют. В точке d газ 

превращается в насыщенный пар. Состояние, которое 

характеризуется участком изотермы слева от точки d, отличается от 

насыщенного пара повышенной плотностью и повышенным 

давлением. Здесь мы имеем перенасыщенный пар. 

Увеличение жидкой фазы происходит путем конденсации 

насыщенного пара вокруг центров конденсации. Центрами 

конденсации могут служить мельчайшие капельки жидкой фазы или 

примеси в виде микроскопических пылинок или ионизированных 

молекул газа. 

Прямой участок экспериментальной изотермы располагается 

таким образом, что заштрихованные площади ниже участка b – c и 

выше участка c – d равны друг другу. 

Для сравнения на графике приведена изотерма идеального 

газа, соответствующая этой же температуре. 

Из рис. 1.12 видно, что при температурах выше критической 

фазовый переход происходить не может, при любом сжатии газ в 

жидкость не переходит. В этих условиях изотермы реального газа 

мало отличаются от изотерм идеального газа. 
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Глава 2. ОСНОВЫ ТЕРМОДИНАМИКИ 

 
2.1. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЕГО ПРИМЕНЕНИЕ 

К ИЗОПРОЦЕССАМ 

 

Первое начало термодинамики фактически является законом 

сохранения энергии применительно к тепловым процессам.  

Тепло, подводимое к системе, расходуется на увеличение её 

внутренней энергии и на совершение работы над внешними телами. 

dAdUdQ  .                                       (2.1) 

Выражение (2.1) представляет собой формулировку первого начала. 

Рассмотрим различные изопроцессы (т.е. процессы, протекающие 

при постоянстве какого-либо параметра) в идеальном газе и 

определим работу, которая совершается в этих процессах. 

 
ИЗОХОРИЧЕСКИЙ ПРОЦЕСС 

 

Изохорическим называется процесс, протекающий при 

постоянном объеме. Тепло, подводимое к газу, целиком расходуется 

на нагревание газа в замкнутом объеме. Работа при изохорическом 

процессе будет равна нулю. Действительно, 

dA = pdV = 0,                                         (2.2) 

поэтому все подводимое к газу тепло, идет на изменение его 

внутренней энергии. 
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dQ = dU; 

dU = cVmdT.                                         (2.3) 

Итак, при изохорическом процессе газ не совершает работы 

над внешними телами. Это иллюстрирует рис. 2.1. Изохорическому 

процессу соответствует прямая 3–4. 

 
ИЗОБАРИЧЕСКИЙ ПРОЦЕСС 

 

Изобарическим называется процесс, протекающий при 

постоянном давлении. Работа при расширении газа отлична от нуля 

dA = pdV. 

В этом случае первое начало термодинамики имеет вид 

dQ = dU + pdV.                                     (2.4) 

Следовательно, при изобарическом процессе подводимое к 

газу тепло затрачивается как на увеличение его внутренней энергии, 

так и на работу по расширению газа. Определим работу, 

совершаемую при изобарическом процессе. 

dA = pdV;       A = p(V2 - V1).                           (2.5) 

Работу можно определить графически (рис. 2.1). 

 

Рис. 2.1 
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При изобарическом процессе газ расширяется от объема V1 до 

объема V2, и работа численно равна площади заштрихованного 

прямоугольника. 

 
ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС 

 

Изменение внутренней энергии газа пропорционально измене-

нию температуры, следовательно, в этом процессе внутренняя 

энергия газа остается постоянной. Поэтому первое начало 

термодинамики запишется так 

dQ = dA.                                           (2.6) 

Следовательно, при изотермическом процессе все подводимое к 

системе тепло затрачивается на работу по расширению газа. 

Изотермический процесс протекает согласно закону Бойля-

Мариотта, т.е. 

const
p

V
 . 

Графически этот процесс представляется гиперболой (рис.2.2). 

Определим работу А в изотермическом процессе 


V

V

pdVA
2

1

.                                        (2.7) 

Выразим давление р из уравнения Менделеева-Клапейрона 

V

1
RT

m
p 


 . 
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Подставим р в (2.7) 

2
2

1
1

A ln

V
m dV m V

RT RT
V VV

 
 

.                          (2.8) 

Графически работа при изотермическом процессе 

изображается площадью заштрихованной фигуры (рис.2.2). 

Для практического осуществления этого процесса необходимо, 

чтобы он протекал очень медленно, так, чтобы любые изменения 

температуры газа выравнивались за счет теплообмена с окружающей 

средой. 

Очевидно, что идеальный изотермический процесс в реальных 

условиях неосуществим. 

 
АДИАБАТИЧЕСКИЙ ПРОЦЕСС 

 

При рассмотрении адиабатического процесса было получено 

уравнение адиабаты (1.57) - уравнение Пуассона 

pV

 = const, 

где  = CP/CV . 

Это уравнение можно представить в виде 

pVVp


1 1
, 

Рис. 2.2 
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следовательно, 

V

Vp
p






1 1 .                                           (2.9) 

Элементарная работа определяется выражением dA=pdV, 

тогда полная работа будет равна 

 








V

V

V

V

V

V V

dV
VpdV

V

Vp
pdVA

2

1

1

2

1

1

1 1
2

1

.                       (2.10) 

Вычислим интеграл из (2.10) 






















VV

V

V

dV
V

V

V

V
1

1
1

2

1 2

1

2

1

11

1

1

1

.                     (2.11) 

Подставив (2.11) в (2.10), получим 


















 









V

VVp
A

2

1

1

11 1
1

.                               (2.12) 

Воспользуемся уравнением Менделеева-Клапейрона 

RT
m

Vp 111


 .                                    (2.13) 

Подставим (2.13) в (2.12) и получим 





















 









V

VRTm
A

2

1

1

1 1
1

.                        (2.14) 

Это выражение и определяет работу при адиабатическом 

процессе. Графически этот процесс изображается адиабатой и 

представлен на рис.2.7 и рис. 2.8. На графиках видно, что адиабата 

идет круче, чем изотерма (рис.2.7), и что адиабата идет тем круче, 

чем больше величина адиабатической постоянной  (рис.2.8). 

 
2.2. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ 
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В предыдущей главе была рассмотрена молекулярно-

кинетическая теория газов и установлены некоторые 

закономерности, имеющие статистический характер.  

Можно использовать другой способ описания поведения газов 

и других тел без рассмотрения их микроструктуры. Этот метод 

получил название термодинамического метода и применяется для 

изучения условий превращения энергии из одного вида в другой. 

В основе термодинамики лежат два экспериментальных закона 

– первое и второе начала, а также принцип недостижимости 

абсолютного нуля (третье начало термодинамики). 

Совокупность тел, обменивающихся энергией, как между со-

бой, так и с другими внешними телами, называется термодина-

мической системой. 

Состояние термодинамической системы определяется 

совокупностью всех величин, характеризующих физические 

свойства системы и называемых ее термодинамическими 

параметрами. К этим параметрам относятся, например, температура 

Т, теплоемкость С и т. д. Два состояния считаются разными, если 

они отличаются друг от друга хотя бы одним параметром. 

Состояние термодинамической системы называется 

стационарным, если значения всех термодинамических параметров 

системы не изменяются во времени. 

Стационарное состояние называется равновесным, если его 

неизменность во времени не обусловлена процессами, 

протекающими во внешних по отношению к системе телах. 

Какие же виды энергии рассматривает термодинамика? 

Для газа было введено понятие внутренней энергии. Эта 

энергия представляет собой суммарную энергию теплового 

движения всех частиц системы в идеальном газе. В механике 

используется работа, приводящая к изменению энергии системы. 

Работа – это мера изменения энергии и форма передачи энергии. 

Существуют две формы передачи энергии. 

1. Энергия неупорядоченного движения одного тела перехо-

дит в энергию упорядоченного движения другого тела. Например, 

при расширении газа движется поршень в сосуде с газом. 

2. При непосредственном обмене энергией между хаотически 

движущимися частицами. При передаче телу энергии увеличивается 
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неупорядоченное движение его частиц, т.е. увеличивается 

внутренняя энергия тела. Это и есть теплообмен.  

Итак, теплообмен – это форма передачи энергии. 

Переход термодинамической системы из одного состояния в 

другое может происходить различными путями. 

Обратимым называется процесс, который может быть про-

веден в обратном направлении таким образом, что система будет 

проходить через те же состояния, что и при прямом ходе, но в 

обратной последовательности. Обратимым может быть только 

равновесный процесс. После установления равновесия система не 

может сама возвратиться к первоначальному состоянию, т.е. процесс 

становится необратимым.  

Для необратимых процессов характерно направление их 

протекания. Таким образом, необратимым процессом называется 

такой процесс, при котором система не может вернуться в исходное 

состояние без каких-либо изменений в окружающих систему телах. 

Например, к необратимому процессу относится расширение газа в 

пустоту. 

Термодинамика изучает равновесное состояние системы. В 

равновесном состоянии ее микроскопические параметры 

усредняются. 

Равновесным может быть медленно протекающий процесс, 

при котором в каждом промежуточном состоянии системы в ней 

успевает установиться равновесие. Очевидно, что обратимым 

процессом может быть только равновесный процесс. 

Круговым процессом или циклом называется процесс, при 

котором система после ряда изменений возвращается в исходное 

состояние. Таким может быть 

периодический процесс по-

следовательного расширения и 

сжатия газа. На графике круговой 

процесс изображается замкнутой 

кривой (рис.2.3). 

Исходное состояние 

системы характеризуется точкой 

1, в которой давление равно p1, a 

объем равен V1. Система, получив 
Рис. 2.3 
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от нагревателя некоторое количество тепла Q1, переходит в 

состояние 2, в котором ее давление равно p2, а объем – V2. Затем 

система возвращается в исходное состояние 1, отдавая при этом 

холодильнику тепло Q2. 

Площадь, ограниченная этой замкнутой кривой, численно 

равна работе A, совершаемой при круговом процессе (цикле). С 

точки зрения закона сохранения энергии, для расширения газа к 

нему нужно подвести тепло, а при обратном ходе тепло должно 

выделиться. Разница этих величин и определяет работу в цикле 

A = Q1 - Q2.                                       (2.15) 

Следовательно, для осуществления кругового процесса 

необходимо наличие теплоотдатчика ("нагревателя") и 

теплоприемника ("холодильника"), а КПД кругового процесса равен 

Q

Q

Q

QQ

Q

A

1

2

1

21

1

1


 .                            (2.16) 

 
2.3. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ 

 

Проанализируем действие этого основного закона вначале на 

примере действия тепловой машины, а затем рассмотрим ряд других 

формулировок II начала. 

Тепловые машины 

работают по 

периодическим процессам 

(циклам). Назначение 

тепловой машины – 

превращение тепла в 

механическую работу. 

II начало 

термодинамики 

утверждает, что в 

циклических процессах 

невозможно полное 

превращение подведенного 

тепла в механическую 

Рис.2.4 
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работу. Часть тепла должна обязательно быть передана 

холодильнику. 

Поясним это. Тепловая машина состоит из трех элементов: 

нагреватель (теплоотдатчик), рабочее тело (РТ – жидкость, пар или 

газ) и холодильник (теплоприемник) (рис. 2.4). 

Рассмотрим простейший цикл, состоящий из двух процессов: 

1) рабочее тело (например, идеальный газ) получает тепло Q1 

от нагревателя, и, расширяясь, совершает положительную работу A1 

> 0; 

2) для того, чтобы совершить работу за цикл и вернуться в 

исходное состояние, газ необходимо сжать; при этом совершается 

отрицательная работа A2 < 0, а тепло Q2  – передается холодильнику. 

Таким образом, передача тепла холодильнику – это 

своеобразная "плата" за то, чтобы было возможно совершить работу 

за цикл. 

Наличие рабочего тела необходимо для совершения работы. 

Если соединить непосредственно нагреватель (имеющий 

температуру T1) и холодильник (с температурой Т2 < Т1), то 

произойдет необратимый процесс передачи тепла от нагревателя к 

холодильнику, а работа совершена не будет. 

Запишем уравнение I начала термодинамики для циклического 

процесса 

Q1= A+Q2.                                        (2.17) 

Таким образом, подведенное тепло Q1 затрачивается на 

совершение работы в течение цикла и на передачу тепла Q2 

холодильнику (потери тепла). Здесь А = А1 - А2. 

Формула (2.16) для коэффициента полезного действия  

тепловой машины показывает, какая часть подведенного тепла Q1 

превращается в полезную работу (работу за цикл) 

Q

Q

Q

QQ

Q

A

1

2

1

21

1

1


 .                           (2.18) 

Как видно из выражения (2.18), КПД тепловой машины всегда 

меньше единицы, так как некоторая часть тепла Q2 неизбежно 

должна быть передана холодильнику. Тепловая машина, которая бы 

работала с нарушением II начала термодинамики, т. е. полностью 
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превращала бы подведенное тепло в механическую работу, 

называется вечным двигателем второго рода (перпетуум мобиле 

второго рода). 

Поэтому II начало термодинамики можно сформулировать 

еще и как невозможность построения перпетуум мобиле второго 

рода. 

 
2.4. ПРИНЦИП ДЕЙСТВИЯ ИДЕАЛЬНОЙ ТЕПЛОВОЙ МАШИНЫ. 

ЦИКЛ КАРНО 

 

Идеальная тепловая машина, обладающая максимальным 

КПД, может быть построена по обратимому циклу Карно
2
, со-

стоящему из двух изотерм и двух адиабат. В качестве рабочего тела 

рассмотрим идеальный одноатомный газ (γ = 1,67). 

 

Рис.2.5 

Проанализируем последовательно 4 участка этого цикла 

(рис.2.5). 

1. Идеальный газ, находящийся в цилиндре под поршнем, 

движущийся без трения и сжатый до некоторого давления p1, 

приводится вначале в контакт с нагревателем. Существенно, что 

                                                           
2
 Французский ученый Sadi Carnot (1796-1832). 
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процесс передачи тепла должен быть обратимым. Для этого 

необходимо, чтобы при получении тепла Q1 температура рабочего 

тела была на бесконечно малую величину dT1 меньше температуры 

нагревателя Т1. 

Получив тепло Q1, газ изотермически расширяется и совер-

шает положительную работу A1 > 0 (участок 1 – 2). На участке 1 – 2 

в ходе изотермического расширения внутренняя энергия газа не 

изменяется и количество тепла Q1 полностью переходит в работу. 

2

1

1

ln
m V

RTQ A
V




.                                (2.19) 

2. Конечная цель цикла – вернуться обратимым образом в 

исходную точку 1, совершив при этом работу. Вернуться обратно, 

следуя изотермической кривой 2-1 нельзя, так как при этом полная 

работа за цикл окажется равной нулю. Возвращаться в исходную 

точку следует по изотермической кривой холодильника, т.е. при 

меньшей температуре. Но прежде чем это сделать, необходимо 

понизить температуру рабочего тела от температуры нагревателя Т1 

до температуры холодильника T2, не потеряв при этом тепла 

необратимым образом. Сделать это можно путем адиабатического 

расширения газа. При этом совершается работа за счет внутренней 

энергии газа, а температура газа понижается как раз за счет 

уменьшения этой внутренней энергии. 

3. Далее рабочее тело соединяется с холодильником, газ при 

температуре Т2 изотермически сжимается до состояния с 

параметрами p4, V4, Т2 (точка 4) и отдает холодильнику количество 

тепла Q2. При этом совершается работа A2  < 0 

V

V
RT

m
QA

4

3

22 ln


 .                                  (2.20) 

4. Для того чтобы замкнуть цикл и вернуться в исходное 

состояние, необходимо путем адиабатического сжатия повысить 

температуру рабочего тела Т2 до температуры T1. Этому процессу 

соответствует участок 4 – 1. Вычислим КПД цикла 
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2 3
1 2

1 41 2

21
1

1

ln ln

ln

m mV V
RT RT

Q Q V V
m VQ

RT
V




  

 



.                  (2.21) 

Покажем, что 

V

V

V

V

4

3

1

2  . 

Действительно, для адиабатического расширения, 

воспользовавшись уравнением адиабаты в переменных Т и V, можно 

записать 

2
2

1
1

1
V T

TV

 


 
 
 

.                                   (2.22) 

В процессе адиабатического сжатия (участок 4 – 1) выполня-

ется соотношение 

1
2

1
4

1
V T

TV

 


 
 
 

.                                    (2.23) 

Из (2.22) и (2.23) следует, что должно выполняться равенство 

V

V

V

V

V

V

V

V

4

3

1

2

4

1

3

2  .                               (2.24) 

Используя условие (2.24), получим из (2.21) 

T

TT

1

21  .                                     (2.25) 

Выражение (2.25) показывает, что КПД идеальной тепловой 

машины, работающей по циклу Карно, определяется только 

температурами нагревателя (T1) и холодильника (T2) и не зависит от 

выбора рабочего тела. 
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Естественно, что для реальных тепловых машин, в которых не 

избежать необратимых процессов (теплопроводности, рассеяния 

тепла), КПД оказывается меньше, чем КПД цикла Карно, т.е. 

реальн. Карно  . 

 
2.5. ПОНЯТИЕ ОБ ЭНТРОПИИ 

 
ПРИВЕДЕННОЕ КОЛИЧЕСТВО ТЕПЛА И ПОНЯТИЕ ОБ ЭНТРОПИИ 

 

Как было показано выше, КПД обратимых тепловых машин 

зависит лишь от температуры нагревателя и холодильника 

1 2

обр

1

T T

T


 .                                      (2.26) 

Для необратимых тепловых машин КПД определяется 

1 2
необр

1

Q Q

Q




                                      (2.27) 

и всегда меньше, чем КПД обратимой машины 

нeoбp < oбp, 

т.е. 

T

TT

Q

QQ

1

21

1

21 


 .                                  (2.28) 

Знак равенства в формуле (2.28) соответствует обратимой 

тепловой машине. Выражение (2.28) можно представить 

T

T

Q

Q

1

2

1

2 11  . 

Преобразовав это неравенство, получим 

0
2

2

1

1 
T

Q

T

Q .                                       (2.29) 
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Если считать, что от холодильника система получает тепло       

(- Q2), то (2.29) примет вид 

0
2

2

1

1 
T

Q

T

Q .                                    (2.30) 

Отношение Q/T называется приведенным количеством тепла. 

Из выражения (2.30) следует, что при обратимом цикле Карно сумма 

приведенных количеств тепла во всех процессах цикла равна нулю 

(для обратимого цикла имеет смысл только знак равенства), а для 

любого цикла – сумма приведенных количеств тепла не может быть 

больше нуля. Это неравенство носит название неравенства 

Клаузиуса. 

Неравенство Клаузиуса может быть обобщено на любой кру-

говой процесс. Можно предположить, что при теплообмене системы 

с n телами, должно выполняться условие 

 

n n

n

T

Q
0

,                                     (2.31) 

т.е. для всякого кругового процесса сумма приведенных количеств тепла 

не может быть больше нуля, а для обратимого процесса она равна нулю. 

Более правильным будет, однако, если в формуле (2.31) будет 

стоять не сумма конечного числа приведенных количеств тепла, а 

сумма бесконечного числа по всему циклу, т.е. интеграл 

0 T

dQ .                                         (2.32) 

Для обратимого процесса это выражение преобразуется в 

равенство 

  0
T

dQ .                                         (2.33) 

Очевидно, что сумму приведенных количеств тепла можно 

рассматривать не только для круговых процессов или циклов, но и 

вообще для любого перехода системы из одного состояния в другое. 

Рассмотрим, например, обратимый цикл, 

изображенный на рис. 2.6. 

Рис.2.6 
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Система из состояния 1 переходит в состояние 2 по ветви I, а 

из состояния 2 в состояние 1 либо по ветви II, либо по III. Покажем, 

что в случае обратимых переходов сумма приведенных количеств 

тепла зависит лишь от начального и конечного состояний системы, и 

не зависит от формы и пути перехода. Для обратимого перехода 

можно записать на основании (2.31) 

 


O
T

Q
0

, 

или 

 





III
T

Q

T

Q
0

.                                 (2.34) 

Если учесть, что состояния 1 и 2 выбраны произвольно, то 

 
 






21 12
T

Q
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Q  
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     

.......
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Q

IIIIII











                        (2.35) 

Таким образом, сумма приведенных количеств тепла, получае-

мых при обратимом переходе из одного состояния и другое, не 

зависит от пути перехода, а определяется лишь начальным и 

конечным состояниями системы. Это означает, что интеграл в 

формуле (2.32), представляющий собой сумму приведенных 

количеств тепла для обратимого процесса, не зависит от пути 

интегрирования (от пути протекания процесса), и определяется 

исключительно начальной и конечной точками пути 

интегрирования, и может быть записан в виде 


2

1
T

dQ .                                            (2.36) 
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Отсюда следует, что существует некоторая величина S, харак-

теризующая состояние системы, и имеющая в первом состоянии 

значение S1, во втором -S2. Разность этих величин равняется сумме 

приведенных количеств тепла для любого обратимого процесса, 

протекающего на пути от состояния 1 до состояния 2 



2

1

12
T

dQ
SS

.                                    (2.37) 

Разность S2 - S1 определяет приращение физической величины, 

являющейся функцией состояния системы, которая называется энтро-

пией. 

Приведенный метод рассуждений не позволяет определить 

абсолютное значение энтропии. Можно только установить разность 

энтропий для двух разных состояний системы. Считается, что 

энтропия определяется через ее приращение dS. Приращение 

энтропии dS, так же как и приращение внутренней энергии dU, 

является полным дифференциалом. 

 

 

 
ЭНТРОПИЯ ОБРАТИМОГО КРУГОВОГО ПРОЦЕССА 

 

Изменение энтропии при переходе системы из состояния 1 в 

состояние 2 определяется по формуле (2.37). Обозначим значение 

энтропии в состоянии 1 после того, как система, окончив весь цикл, 

вернется снова в него, через S'1. Тогда 



1

2

21'
T

dQ
SS .                                      (2.38) 

Для обратимого процесса на основании (2.33) можно записать 

0

1

2

2

1

  T

dQ

T

dQ . 
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Таким образом, при совершении обратимого кругового 

процесса энтропия системы не меняется, 

остается постоянной. 

Пусть теперь переход системы из 

состояния 1 в состояние 2 происходит по 

необратимому пути, а возвращение 

системы обратно из состояния 2 в 

состояние 1 - по обратимому пути 

(рис.2.7). 

В целом цикл будет необратим, 

поэтому можно записать 

2 1

1 2
(необр) (обр)

0
dQ dQ

T T
  

.      (2.39) 

Для обратимого процесса выполняется формула (2.37). С 

учетом этого выражение (2.39) можно представить 

 
2

1 2

1
(необр)

0
dQ

S S
T

  
. 

Тогда 

 
2

1 2

1
(необр)

dQ
S S

T
 

                                 (2.40) 

или 

2

1
(необр)

dQ
S

T
 

.                                     (2.41) 

В дифференциальном виде формулу (7.41) можно записать 

T

dQ
dS  ,                                          (2.42) 

т.е. энтропия необратимого процесса возрастает. 

Рис. 2.7 
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ЭНТРОПИЯ ИЗОЛИРОВАННОЙ ИЛИ ЗАМКНУТОЙ СИСТЕМЫ 

 

Если теперь рассмотреть изолированную (т.е. замкнутую) си-

стему, в которой отсутствует теплообмен с окружающей средой   

(dQ = 0), то для такой системы можно записать 

dS  0.                                             (2.43) 

Таким образом, энтропия изолированной системы или оста-

ется постоянной в обратимых процессах, или возрастает в необ-

ратимых процессах, а введение понятия об энтропии позволяет 

установить направление протекания необратимых процессов: в 

замкнутой системе процессы протекают в сторону возрастания 

энтропии. 

Формула (2.43) выражает второе начало термодинамики: 

энтропия теплоизолированной системы возрастает в необратимых 

процессах и остается постоянной в обратимых. 

Отметим, что процесс, протекающий без теплообмена системы 

с окружающей средой, был ранее определен как адиабатический. 

При обратимом адиабатическом процессе энтропия системы 

должна оставаться постоянной, т.е. S = const. Отсюда следует, что 

адиабатический процесс может быть назван по аналогии со всеми 

изопроцессами изоэнтропийным, а кривая, соответствующая 

обратимой адиабате (например, в цикле Карно) может быть названа 

изоэнтропой. 

Вернемся к циклу Карно, который на рис. 2.5 был изображен в 

виде диаграммы состояний в параметрах давление–объем. Цикол 

Карно может быть представлен в виде диаграммы состояний в 

параметрах температура-энтропия (рис. 2.8). Промежуточные точки 

1, 2, 3, 4 рис. 2.8 соответствуют этим же точкам на рис.2.5. 

Изотермический 

процесс передачи тепла от 

нагревателя к рабочему 

телу при температуре T1 

соответствует 

горизонтальному участку 

1–2 на рис.2.8. При этом 

энтропия системы 

Рис. 2.8 
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возрастает от S1 до S2 . Адиабатическое расширение 2–3 изображается 

вертикальным участком, при этом энтропия остается постоянной. Затем 

следует изотермическое сжатие (участок 3–4), при котором энтропия 

системы опять убывает до величины S1.  

Наконец, последний участок – адиабатическое сжатие (участок 

4–1), на котором энтропия снова остается постоянной, замыкает 

цикл. 

Таким образом, после завершения цикла энтропия системы 

остается неизменной и равна исходному значению S1. 

 
ТЕРМОДИНАМИЧЕСКАЯ ШКАЛА ТЕМПЕРАТУР 

 

Рассмотрение газовых законов показывает, что используемая 

шкала температур, вообще говоря, зависит от рода термометрического 

тела или рода газа, используемого в газовом термометре. При этом 

наиболее точным, очевидно, будет газовый термометр с идеальным 

газом. 

Что же касается выводов молекулярно-кинетической теории 

идеального газа, то определяемая этой теорией связь между 

абсолютной температурой и средней кинетической энергией 

поступательного движения молекул 

пост

3

2
kTE   

была установлена значительно позже. 

Однако на основании выводов термодинамики можно 

построить так называемую термодинамическую шкалу температур, 

которая уже не будет зависеть от рода термометрического тела. 

В самом деле, в случае обратимого цикла Карно, как мы 

видели, КПД можно определить следующим образом 

T

TT

Q

QQ

1

21

1

21 


 , 

т.е. 

T

T

Q

Q

2

1

2

1 
.                                           (2.44) 
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При этом, поскольку КПД обратимого цикла Карно не зависит 

от рода рабочего тела, то отношение Q1/Q2, а значит, и отношение 

температур T1/T2 не зависит от рода термометрического тела. 

Следовательно, используя (2.44) и учитывая, что Q1 и Q2 известны, 

можно построить термодинамическую шкалу температур, не 

зависящую от выбора термометрического тела. 

Если градус по такой шкале выбрать как одну сотую долю 

интервала температур между таянием льда и кипением воды при 

нормальных условиях, то такая шкала совпадает с обычной шкалой 

газового термометра с идеальным газом. Это соответствие и 

учитывается при построении шкалы температур в настоящее время. 

 
2.6. ТЕРМОДИНАМИЧЕСКАЯ ВЕРОЯТНОСТЬ И ЭНТРОПИЯ 

 

В соответствии с определением, введенным ранее, состояние 

системы, определяемое термодинамическими параметрами (p, V, T) 

называется макросостоянием, которое и наблюдается на опыте. 

Если же состояние системы определяется путем задания координат 

и составляющих скоростей или импульсов частиц, входящих в 

систему, то такое состояние называется микросостоянием данной 

системы. Это означает, например, что для системы, состоящей из N 

частиц, ее микросостояние определяется посредством задания 3N 

координат и 3N составляющих импульсов. 

Очевидно, что любое микросостояние системы соответствует 

ее вполне определенному макросостоянию. Однако каждое 

макросостояние может быть реализовано большим числом 

микросостояний, так как естественно, что некоторые перестановки 

частиц в пределах системы не приводят к изменению ее 

макросостояния. 

Число различных микросостояний, соответствующих данному 

макросостоянию, называется статистическим весом или 

термодинамической вероятностью. Таким образом, 

термодинамическая 

вероятность представляет 

собой число 

микроскопических способов, 

при помощи которых может 

Рис.2.9 
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быть осуществлено данное макросостояние. 

Рассмотрим, например, самую простую систему, состоящую 

всего из двух частиц в сосуде, мысленно разделенном на две 

половины (рис. 2.9).  

Пусть, далее, эти две частицы могут свободно перемещаться 

по сосуду. Какие микросостояния возможны для такой системы? 

С макроскопической точки зрения обе частицы одинаковы, 

поэтому возможны три состояния. 

1. Частицы распределились поровну в обеих половинах 

сосуда, т.е. в каждой половине располагается по одной частице. 

2. Обе частицы собрались в левой половине. 

3. Обе частицы собрались в правой половине. 

Однако с микроскопической точки зрения дело обстоит 

несколько иначе. Обозначив частицы буквами а и b, мы видим на 

рис.2.9, что здесь возможны четыре варианта расположения частиц, т. 

е. четыре микросостояния. Макросостоянию, когда частицы 

распределяются поровну в обеих половинах сосуда, соответствуют два 

микросостояния: одно – когда частица а находится в левой половине, а 

b – в правой и второе – когда наоборот. С макроскопической точки 

зрения это одно и то же. 

На основании выше изложенного можно утверждать. 

1. Первому макросостоянию соответствуют два возможных 

микросостояния. 

2. Второму макросостоянию соответствует одно 

микросостояние. 

3. Третьему макросостоянию соответствует также одно 

микросостояние. 

В математической теории вероятности вероятностью 

случайного события w называется отношение числа случаев n, 

благоприятствующих его осуществлению, к общему числу случаев 

N, когда все случаи равновозможны, т.е. 

N

n
w .                                          (2.45) 

Наиболее вероятное макросостояние – распределение частиц 

поровну, которое реализуется двумя микросостояниями, т.е. 

n = 2,     N = 4,     w = 0,5. 
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При увеличении числа частиц увеличивается и вероятность 

этого макросостояния, т.е. при n   также и N  , так что w  1. 

Вероятность какого-либо макросостояния определяется 

W = wP,                                        (2.46) 

где w – математическая вероятность случайного события 

(отношение числа случаев, благоприятствующих осуществлению 

события, к общему числу возможных случаев), а P – 

термодинамическая вероятность состояния системы. Последняя 

выражает число микросостояний, которым осуществляется данное 

макросостояние, т.е. P > 1. Чем выше P, тем 

больше вероятность данного состояния 

системы. 

Теперь несколько усложним задачу. 

Пусть теперь в сосуде находятся не две, а 

четыре разные частицы: a, b, c, d (рис.2.10). 

Какие теперь возможны варианты 

распределения частиц по сосуду? 

Из теории сочетаний известно, что число способов, которыми 

могут быть распределены частицы по обеим половинам сосуда, так 

что в первой половине находится n частиц, а во второй – остальные 

(N - n) частиц, равно 

 !nN!n

!N
P nN,n




.                            (2.47) 

Согласно нашему определению, это и есть термодинамическая 

вероятность данного макросостояния системы. 

Проанализируем теперь эту формулу на примере наших 

четырех частиц. Предположим вначале, что в обеих половинах 

сосуда располагаются по две частицы, т.е. положим N = 4 и n = 2. 

Тогда по формуле (2.47) имеем 

 
2,2

4! 1 2 3 4
6

2! 4 2 ! 1 2 1 2
P

  
  

   

. 

Если же в одной половине не будет ни одной частицы (n = 0), 

а в другой их будет четыре, то термодинамическая вероятность 

этого состояния будет 

Рис. 2.10 
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0,4

4! 4!
1

0! 4! 1 4!
P   

 
. 

Это показывает, что второе макросостояние (N = 4, n = 0) 

реализуется через одно микросостояние, т.е. только одним 

способом. Первое макросостояние реализуется шестью 

микросостояниями, т.е. в шести возможных случаях. 

Следовательно, макросостояние, определяемое 

расположением определенного числа частиц в левой и правой 

половинах сосуда, будет реализовываться через микросостояния, 

соответствующие возможным перестановкам нумерованных частиц, 

не нарушающим исходное распределение частиц по их количеству. 

Точно так же макросостояние, которое соответствует 

варианту, когда в одной половине находится одна частица, а в 

другой – три (N = 4, n = 1), реализуется с помощью четырех 

микросостояний 

 
4

3!1

4!

!141!

4!
1,3 





P

. 

Возможные варианты расположения частиц иллюстрируются 

табл. 2.1. 

 

Таблица 2.1 
n = 2 N - n n = 1 N - n n = 0 N - n 

ab cd a bcd  abcd 

ac bd b acd   

bc ad c abd   

bd ac d abc   

ad cb     

 

Из рассмотренного примера видно, что наибольшей 

термодинамической вероятностью (P = 6) обладает микросостояние, 

при котором частицы распределены поровну между половинами 

сосуда, т.е. равновесное состояние. Наименьшей же 

термодинамической вероятностью (P = 1) обладает макросостояние, 

при котором все частицы располагаются в одной половине сосуда. 

То же самое мы видели в предыдущем примере, когда в сосуде 

было две частицы. 
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Выражение для термодинамической вероятности легко 

записать и в общем виде для системы (газа), состоящей из N частиц 

(молекул). В самом деле, если система состоит из N частиц и 

невозможно выделить частицы в группы, то число возможных 

микрораспределений равно числу перестановок из этих N частиц, 

т.е. N!. Если же данное макросостояние системы из N частиц 

определяется тем, что частицы распределены по группам (N1 частиц 

в 1-й группе, Ni частиц в i-й группе), то число микросостояний 

(микрораспределений), не изменяющих данное макросостояние, 

будет 







i

!N i

!N

!N i!.....N!N!N

!N
P

321

.                     (2.48) 

Как мы уже видели, в противоположность математической 

вероятности w, которая всегда меньше единицы, термодинамическая 

вероятность P всегда больше единицы или равна единице. С 

увеличением числа частиц N термодинамическая вероятность 

стремительно растет и при значительном числе частиц она будет 

очень большой величиной, т.е. P >> 1. Например, уже при десяти 

частицах (N=10), распределенных поровну по пяти ячейкам, 

согласно (2.47) имеем 

11340
!2!2!2!2!2

!10



P . 

Остановимся еще раз на смысле понятия о термодинамической 

вероятности и на ее связи с общей или математической вероятностью. 

В рассмотренном примере сосуда из двух половин и четырех частиц 

(молекул) полное число всех возможных распределений частиц равно, 

очевидно, 16. В самом деле, как уже было показано, число 

распределений частиц поровну равно 6. Кроме того, возможны два 

случая распределения частиц в сочетании 1–3 и 3–1 и два случая в 

сочетании   0–4 и 4–0, т.е. в целом число всех распределений Z будет 

Z = 6 + 2 х 4 + 2 х 1 = 16. 

С другой стороны, в случае однородного газа все молекулы 

одинаковы (неразличимы) и для данного макросостояния системы 
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(данного термодинамического состояния) важно лишь то, какое 

число частиц находится в первой и во второй половинах сосуда. 

Например, общая (математическая) вероятность W состояния 

системы с равномерным распределением частиц по половинам 

сосуда будет равна 6/16, а вероятность w1 одного распределения 

равна 1/16. 

Следовательно, согласно (2.46), термодинамическая 

вероятность распределения частиц поровну равна 6. 

Из выражения (2.46) видно, что общая (математическая) 

вероятность данного макросостояния системы пропорциональна 

термодинамической вероятности. Отсюда понятна связь: чем 

больше термодинамическая вероятность, тем больше вообще 

вероятность этого состояния системы. 

 
ЭНТРОПИЯ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ 

 

О состоянии системы (например, о том, что частицы 

распределены поровну) нельзя говорить как о достоверном событии. 

Можно говорить лишь о вероятности данного макросостояния 

системы, реализуемого через совокупность микросостояний. Всегда 

имеется какая-то неопределенность в том, что система будет 

находиться именно в данном состоянии, поэтому необходимо 

выбрать какую-то количественную меру неопределенности 

макросостояния системы. 

В статистической физике в качестве такой меры 

неопределенности выбрана энтропия S, которая определяется 

формулой, предложенной Больцманом 

lnS k P  ,                                      (2.49) 

где k = 1,38·10
-23

 Дж/К – постоянная Больцмана. Следовательно, 

энтропия выбирается как величина, пропорциональная 

натуральному логарифму термодинамической вероятности. 

Множитель k выбирается из соображений размерности. 

Проанализируем, подходит ли функция lnP в качестве 

количественной меры неопределенности макросостояния системы. 

Во-первых, если представить себе, что данное макросостояние 

системы реализуется только через одно микросостояние, то в этом 

случае термодинамическая вероятность P = 1 и никакой 
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неопределенности нет, т.е. неопределенность этого макросостояния 

должна быть равной нулю. Действительно, в этом случае 

S = k·ln1 = 0. 

Во-вторых, по физическим соображениям, как уже говорилось 

выше, с ростом числа возможных микросостояний, реализующих 

данное макросостояние системы, т. е. с ростом P, должна возрастать 

неопределенность в возможности обнаружить систему именно в 

этом состоянии. Легко видеть, что функция  lnP подходит и в этом 

случае, так как с ростом аргумента (т.е. с ростом P) возрастает и 

логарифмическая функция, а значит, и энтропия системы S. 

В-третьих, из определения энтропии в термодинамике через 

приведенное тепло (через энергию) можно заключить, что энтропия, 

как и энергия, является величиной аддитивной. Это означает, что 

энтропия совокупности систем должна быть равной сумме энтропий 

таких систем. Легко видеть, что функция (2.49) удовлетворяет и 

этому свойству. Действительно, так как для случая двух систем 

вероятность того, что одновременно первая система находится в 

одном, а вторая в другом состоянии, равна произведению 

вероятностей, получаем 

1 2 1 2 1 2( )ln ln lnS k k P k P S SP P        . 

Таким образом, энтропия, определяемая по формуле (2.49), 

действительно является количественной мерой неопределенности 

макросостояния системы. 

 
2.7. СТАТИСТИЧЕСКИЙ СМЫСЛ ВТОРОГО НАЧАЛА 

ТЕРМОДИНАМИКИ.АНАЛИЗ ТЕРМОДИНАМИЧЕСКИХ 

ПРОЦЕССОВ 

 

Введя статистическое понятие об энтропии системы, можно 

дать статистическое истолкование второго начала термодинамики, а 

также проанализировать некоторые термодинамические процессы, в 

которых в качестве параметра участвует энтропия. 
 

СТАТИСТИЧЕСКИЙ СМЫСЛ ВТОРОГО НАЧАЛА ТЕРМОДИНАМИКИ 
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Выше было показано, что на основании второго начала 

термодинамики 

T

dQ
dS  . 

Если же система замкнута (dQ = 0), то изменение энтропии 

0dS . 

Следовательно, энтропия замкнутой системы не может 

уменьшаться. Таким образом, исходя из второго начала 

термодинамики, можно сформулировать закон возрастания 

энтропии для замкнутых систем: энтропия замкнутой системы при 

всех процессах или возрастает или остается постоянной, т.е. не 

убывает. 

Этот вывод, сделанный на основании второго начала 

термодинамики, может быть объяснен лишь на основе статистического 

определения энтропии S через термодинамическую вероятность по 

(2.49). 

Действительно, в предоставленной самой себе (замкнутой или 

изолированной) системе все процессы могут протекать лишь в 

направлении перехода из менее вероятных состояний в более 

вероятные. 

Другими словами, термодинамическая вероятность состояния 

замкнутой системы при любых, протекающих в ней процессах, не 

убывает. Поэтому необратимый процесс (dS > 0 и dP > 0) есть такой 

процесс, обратный которому представляет собой переход из более 

вероятного состояния в менее вероятное состояние. 

Понятно, что вероятность обычного состояния замкнутой 

системы, связанного с беспорядочным тепловым движением ее 

частиц, значительно больше, чем вероятность направленного 

механического движения частиц и системы в целом, поэтому 

тепловая энергия (тепло) никогда не переходит сама по себе в 

механическую работу. А если переходит с помощью тепловых 

машин, то не полностью. 

Для осуществления маловероятного процесса перехода тепла в 

работу необходим (по второму началу термодинамики) какой-то 

компенсирующий процесс во внешних относительно системы телах. 
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Этот компенсирующий процесс должен быть таким, чтобы 

термодинамическая вероятность и энтропия всей системы тел, 

участвующих в осуществлении обратного и компенсирующего 

процессов, возрастали. Например, процесс диффузии в газах, 

направленный на выравнивание концентраций, происходит потому, 

что равномерное распределение частиц по всему объему 

статистически будет более вероятным. 

Второе начало термодинамики можно рассматривать как 

статистический закон, выполняемый для замкнутых систем, 

состоящих из большого числа частиц. 

Таким образом, второе начало термодинамики, являющееся 

статистическим законом, не обладает такой всеобщностью и 

неизбежностью, как закон сохранения энергии (первое начало 

термодинамики). От второго начала возможны и отклонения. 

Возрастание энтропии есть лишь ее наиболее вероятное изменение, 

соответствующее наиболее вероятному изменению состояния 

системы. Здесь, как уже говорилось выше, необходимо учитывать 

флуктуации, т.е. отклонения от наиболее вероятных средних 

значений параметров, которые сказываются тем больше, чем меньше 

число частиц, образующих систему. Если система состоит из малого 

числа частиц или является малой частью большой системы, то такие 

флуктуации (отклонения) могут быть настолько большими, что 

возможны процессы с убыванием энтропии. Так, например, при 

броуновском движении твердая частица, взвешенная в воздухе, 

может подняться на значительную высоту. 

Однако она должна занимать какое-то среднее положение. В 

конце концов частица и займет это среднее положение и будет 

колебаться (флуктуировать) около него. 

 
ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ, ИЛИ ТЕОРЕМА НЕРНСТА 

 

Рассмотренное выше выражение 

 

 

 

 

  
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SSdS
T
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определяет не саму энтропию системы, а ее изменение, т.е. разность 

ее значений в двух состояниях. 

Нернстом
3
 была доказана теорема, на основании которой 

определяется возможность отыскания значений самой энтропии в 

любом состоянии системы. Эта теорема, называемая еще третьим 

началом термодинамики, утверждает, что энтропия любой системы 

(тела) стремится к нулю, если стремится к нулю абсолютная 

температура, т.е. 

0lim
0




S
T

.                                          (2.50) 

Другими словами, согласно третьему началу термодинамики, 

при абсолютном нуле температуры энтропия любой системы равна 

нулю. 

Тогда, с использованием этой теоремы энтропия системы в 

любом состоянии, соответствующем температуре T, определится 

следующим выражением 


T

T

dQ
S

0

.                                           (2.51) 

Выражение (2.51) легко использовать на практике, так как 

тепло dQ всегда можно определить через теплоемкости (CV, CP) и 

изменение температуры dT 

dQ = CPdT 

или 

dQ = CVdT. 

Попробуем выяснить, какой же физический смысл имеет 

третье начало термодинамики. Если температура системы равна 

абсолютному нулю, то согласно ее определению, при этом 

прекращается беспорядочное тепловое поступательное движение 

частиц системы. 

                                                           
3
 Nernst Walhter, 1864-1941, немецкий химик и физик, лауреат Нобелевской 

премии по химии 1920 г. 
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В таком состоянии системы ее макросостояние будет 

определяться только через одно микросостояние. Следовательно, 

никакой неопределенности в таком состоянии системы не будет, и ее 

энтропия становится равной нулю. 

Третье начало термодинамики является фактически 

следствием из определения энтропии как количественной меры 

неопределенности макросостояния системы, реализуемого через 

совокупность ее макросостояний. 

 
СВОБОДНАЯ ЭНЕРГИЯ И ХИМИЧЕСКИЙ ПОТЕНЦИАЛ 

 

При равновесном (обратимом) процессе при наличии 

теплообмена системы с окружающей ее средой работа, 

производимая системой, согласно первому и второму началам 

термодинамики, будет равна 

dA = dQ – dU = TdS - dU 

или при условии постоянства температуры (T = const) имеем 

dA = -d(U-TS)T=const .= - dF.                           (2.52) 

Следовательно, работа, совершаемая системой, 

обменивающейся теплом с окружающей средой, при условии 

постоянства температуры, равна убыли функции 

F = U - TS,                                         (2.53) 

которая называется свободной энергией. 

Как видно из (2.53), свободная энергия есть часть внутренней 

энергии системы, которая может быть превращена в механическую 

работу. Другая часть свободной энергии, равная произведению TS, 

является энергией, связанной в тепловом движении, и не может 

превращаться в работу. 

Последнее становится более наглядным, если (2.53) 

переписать в виде 

U = F + TS.                                         (2.54) 

Однако внутренняя энергия системы может также  изменяться 

за счет изменения в ней числа частиц N, поэтому в самом общем 
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виде закон сохранения энергии (первое начало термодинамики) 

можно записать так 

dU = dQ - dA + dN, 

а в случае равновесного процесса в виде 

dU = TdS – dA + dN.                               (2.55) 

Введенная здесь величина   называется химическим 

потенциалом. Для выяснения его смысла рассмотрим совместно 

дифференциал связанной энергии 

d(TS) = TdS + SdT                                   (2.56) 

и выражение (2.55). В результате получим 

(U - TS) = dF = -SdT – dA + dN.                       (2.57) 

Отсюда при условии постоянства температуры (T = const) и dA = 0 имеем 

dN

dF
      или     

N

F




 .                              (2.58) 

Следовательно, химический потенциал соответствует 

свободной энергии системы, приходящейся на одну частицу, при 

условии постоянства температуры и внешних параметров среды       

(dA = 0). 

Говоря более точно, химический потенциал  численно равен 

изменению свободной энергии системы при изменении количества 

частиц на единицу. 

Вообще говоря, необходимо заметить, что введенная величина 

 имеет размерность энергии, соответствующей химическому 

потенциалу, а сам химический потенциал по размерности равен 

величине , деленной на заряд. Например, для электрона 

e


0

,                                          (2.59) 

где e – заряд электрона. 

 
2.8. ЭЛЕМЕНТЫ КВАНТОВОЙ СТАТИСТИКИ ЭЛЕКТРОНОВ 
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Рассмотрим теперь вкратце поведение большого количества 

микрочастиц, т.е. системы. Под системой понимается совокупность 

большого количества тел или частиц. Макроскопические свойства 

таких систем и макроскопические процессы, протекающие в них, 

разумеется, будут зависеть от  поведения элементов системы, т.е. от 

микроскопических процессов, происходящих с частицами. Ранее мы 

рассматривали такие статистические ансамбли или системы, 

состоящие из большого количества молекул. Для их описания 

применялись различные распределения, в частности, распределение 

Максвелла-Больцмана молекул по их скоростям.  

На ранних этапах исследования поведения микросистем 

делались попытки применить для электронов статистическое 

распределение Максвелла-Больцмана, которое первоначально 

применялось для молекул. Однако, как было показано позже, для 

электронов в общем случае справедливой является квантовая 

статистика Ферми-Дирака. 

 
СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ФЕРМИ-ДИРАКА ПО 

КВАНТОВОЙ ТЕОРИИ 

 

Естественно, что при переходе к квантовой статистике, 

основывающейся на квантовой механике, необходимо учитывать все 

особенности последней. 

Во-первых, необходимо учитывать соотношение неопределен-

ности Гейзенберга при рассмотрении элемента объема фазового 

пространства. Как известно, по классической статистике и 

классической механике, движение частицы однозначно определено, 

если заданы три ее координаты и три составляющих импульса. 

Поэтому элемент объема такого фазового пространства с учетом 

соотношения Гейзенберга, не может быть сколь угодно малым, а 

должен удовлетворять неравенству 

dxdydzdpxdpydpz ≥ h
3
. 

Следовательно, удовлетворяя соотношению 

неопределенностей, мы можем разбить фазовое пространство на 

такие элементарные ячейки, которые «по размеру» будут не меньше, 

чем h
3
. Попадая в такую элементарную ячейку фазового 

пространства, электрон будет обладать вполне определенным 
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состоянием, поэтому число ячеек в таком шестимерном 

пространстве, а значит, и число возможных состояний электрона 

равно фазовому объему, деленному на h
3
, т.е. число возможных 

состояний будет равно 

h

dpdpdxdydzdp zyx

3
. 

Во-вторых, необходимо учитывать принцип Паули, а это при-

водит к тому, что в каждой ячейке фазового пространства может 

быть лишь два электрона с различными спинами. 

В трехмерном пространстве импульсов элемент объема имеет 

вид 

dxdydzdpxdpydpz = Vdpxdpydpz = h
3
, 

откуда 

V

h
dpdpdp zyx

3
 , 

где V – объем соответствующей системы. В трехмерном пространстве 

импульсов минимальный размер элементарной ячейки будет равен  

h
3
/ V. 

В-третьих, в квантовой статистике Ферми-Дирака все частицы 

(электроны) считаются неразличимыми, и перемена их местами не 

приводит к изменению состояния всей системы частиц. В 

классической же статистике Максвелла-Больцмана, считалось, что 

перемена мест частиц приводит к изменению состояния системы. 

Итак, к электронам применима квантовая статистика, исходя-

щая из необходимости описания электронов при помощи квантовой 

механики. С учетом всех этих особенностей квантовой теории 

Ферми и Дираком была выведена формула для функции 

распределения электронов по энергиям 

e

f

kT

Eф






1

1 ,                                     (2.60) 

где =EF – энергия Ферми, соответствующая химическому 

потенциалу. 
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Следовательно, для вырожденного электронного газа приме-

нима формула (2.60). Однако можно легко видеть, что при не-

которой более высокой температуре такое вырождение может и сни-

маться. В самом деле, если при некоторой температуре, называемой 

температурой вырождения, и выше имеет место соотношение 

1


e kT

E

, 

то (2.60) переходит в следующее 

Aeeef kT

E

kT

E

kT




  , 

что уже совпадает с классическим распределением Максвелла-

Больцмана. 

 

Рис. 2.11 

 

На рис.2.11 представлены графики функции fф по (2.60) для 

случаев Т=0 и Т>0. Из этих графиков видно, что при Т=0 

вероятность заполнения электроном уровня с энергией Е< равна 1, 

т.е.  fф= 1. Наоборот, fф=0, если Е>. Если же Т>0, то fф0 при Е > и 

имеет конечное значение. 

Разумеется, что если функция f определяет вероятность запол-

нения энергетического уровня электроном, то вероятность того, что 

уровень будет пустой, равна (1 - f ). 

В заключение запишем распределение частиц по импульсам и 

по энергиям в квантовой статистике. 

Как мы видели выше, число ячеек Z в трехмерном 

пространстве импульсов будет равно 
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dpdpdp
h

V
Z zyx3
 . 

Соответственно число ячеек z в единице объема кристалла 

(системы) запишется в виде 

h

dpdpdp

V

Z
z

zyx

3
 .                                 (2.61) 

Тогда число dn электронов в единице объема, импульсы 

которых находятся в интервале от рx до рx + dpx, от ру до ру + dpy, от 

рz до  pz + dpz, с учетом (2.60), (2.61) и принципа Паули будет 

определяться выражением 

h

dpdpdp

e

)dp,dp,p(dn
zyx

kT

Ezyx 3

2

1

1







.           (2.62) 

По аналогии с этим число электронов в единице объема, 

обладающих энергиями, значения которых лежат в интервале от Е 

до     Е + dE, определится выражением 

1

24
23








e

EE)m(
)E(dn

kT

E

d .                             (2.63) 

 

Глава 3. СТРУКТУРА ТВЕРДОГО ТЕЛА 

 
3.1. КОНДЕНСИРОВАННОЕ ВЕЩЕСТВО 

 

Конденсированным называется состояние вещества, при 

котором атомы и молекулы, из которых это вещество состоит, 

сближаются настолько, что силы взаимодействия между ними 

возрастают. Таким образом, конденсированное вещество – это 

твердые или жидкие тела. Взаимодействие атомов такого вещества 

имеет электромагнитную природу и описывается на основе законов 

квантовой механики. 

Одной из форм конденсированного состояния является 

кристалл. Подавляющее большинство твердых тел в природе имеет 
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кристаллическое строение. Характерным свойством идеального 

кристалла является регулярное расположение в нем атомов, при 

котором центры атомов (атомные ядра) в трехмерном пространстве 

образуют периодическую структуру, называемую кристаллической 

решеткой. Точки, в которых расположены центры атомов, 

называются узлами решетки. 

Идеальный кристалл образуется посредством многократного 

повторения в пространстве одного и того же структурного элемента, 

называемого элементарной ячейкой. Элементарная ячейка электрически 

нейтральна и может содержать один или несколько атомов или ионов. 

Таким образом, правильное периодически повторяющееся размещение 

частиц в кристалле можно описать с помощью операции параллельного 

перемещения (или трансляции) одного и того же фрагмента – 

элементарной ячейки. Это означает, что кристалл совместится сам с 

собой при таких перемещениях, т.е. обладает трансляционной 

симметрией. 

Регулярный характер расположения частиц в одиночном 

кристалле (монокристалле) проявляется в правильной 

геометрической форме таких кристаллов. Как следствие, кристаллы 

обладают свойством анизотропии, т.е. зависимости ряда физических 

свойств (механических, электрических, оптических) от направления 

в пространстве. Иначе говоря, свойства кристалла, например 

механические (модули упругости), электрические (относительная 

диэлектрическая проницаемость) или оптические (относительный 

коэффициент преломления) различны в зависимости от того, в каком 

направлении их измерять. Кристаллы анизотропны. У большинства 

твердых тел, однако, анизотропия не проявляется в 

макроскопических масштабах по той причине, что такие тела (как 

правило, металлы) состоят из беспорядочно ориентированных 

мелких кристалликов (кристаллитов), образующих цельный 

конгломерат – поликристалл. Только специальные условия 

кристаллизации позволяют получать большие монокристаллы. 

Обычно их выращивают из расплавов или растворов. 

Регулярное расположение атомов в кристалле соответствует 

минимуму потенциальной энергии, когда силы отталкивания между 

частицами уравновешиваются силами притяжения. В рамках 

классической механики предполагается, что при нулевой 
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температуре все атомы фиксированы в положении равновесия. При 

температурах выше абсолютного нуля атомы испытывают 

колебания около положений равновесия, причем амплитуда 

колебаний возрастает с увеличением температуры. При повышении 

температуры выше определенной кристаллическая структура 

перестает быть устойчивой, и вещество переходит в жидкое 

состояние. Происходит фазовый переход, и возникает жидкая фаза 

вещества. 

Для жидкостей характерен ближний порядок в расположении 

частиц, при котором по отношению к любой частице расположение 

ближайших соседей является упорядоченным. Однако по мере 

удаления частиц друг от друга такой порядок постепенно исчезает, и 

расположение частиц становится хаотическим. Вследствие 

отсутствия дальнего порядка жидкости легко меняют свою форму и 

принимают форму сосуда, в котором они находятся. 

К конденсированным веществам относятся также аморфные 

твердые тела, не имеющие кристаллической структуры. Их можно 

рассматривать как переохлажденные жидкости, частицы которой в 

силу высокой вязкости имеют меньшую подвижность. Аморфное 

состояние является метастабильным, а не устойчивым, и со 

временем переходит в кристаллическое состояние. К числу 

аморфных тел относятся стекла, смолы, битумы. 

Некоторая часть твердых тел (каучук, пластмассы, 

растительные и животные ткани) относится к классу полимеров. 

Полимерами называются вещества, образованные из очень больших 

(макроскопических) молекул, массы которых могут составлять 

десятки и сотни тысяч атомных единиц. Такие макромолекулы 

состоят из повторяющихся групп обычных молекул (мономеров). 

Макромолекулы бывают линейными и разветвленными и могут 

закручиваться, образуя клубки. Например, молекула полиэтилена 

состоит из 20000 звеньев (СН - групп). Ее относительная масса 

имеет порядок 280000. 

 
3.2. СИЛЫ СВЯЗИ В КРИСТАЛЛАХ 

 

Итак, атомы и молекулы в кристаллах связаны между собой 

сильной связью, которая и объясняет кристаллическую структуру. 
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Рассмотрим, какие виды связей существуют между атомами и 

молекулами в кристаллах. 

 
СВЯЗЬ ЗА СЧЕТ СИЛ ВАН-ДЕР-ВААЛЬСА 

 

С ван-дер-ваальсовыми силами мы уже познакомились при 

изучении реальных газов. В самом деле, при переходе от идеального 

газа к реальному вместо уравнения Менделеева-Клапейрона 

рассматривается уравнение Ван-дер-Ваальса. В этом уравнении 

учитываются силы притяжения между молекулами, что приводит к 

увеличению давления. 

Поэтому силы притяжения, действующие между 

нейтральными молекулами и атомами и имеющие ту же природу, 

что и силы, объясняющие уравнение Ван-дер-Ваальса, получили 

название сил Ван-дер-Ваальса. В частности, только силами Ван-дер-

Ваальса можно объяснить устойчивость молекул в инертных газах. 

Силы Ван-дер-Ваальса как силы притяжения включают в себя 

фактически три вида взаимодействия. 

1. Дисперсионные силы, или силы, возникающие между 

нейтральными атомами за счет согласованного движения 

электронов в соседних атомах. Дело обстоит так, что при 

согласованном движении электронов в соседних атомах сами атомы 

как бы представляют собой два диполя, или два осциллятора. 

Взаимодействие таких диполей соответствует их притяжению, что 

подтверждается и теорией. Согласно квантовой механике, нулевая 

энергия такой системы из двух осцилляторов уменьшается при 

сближении атомов. Этим и объясняется притяжение атомов за счет 

дисперсионных сил. 

Расчеты показывают, что дисперсионные силы притяжения Fд 

изменяются с расстоянием r по закону 

Д 7

1
F

r
 . 

Соответственно энергия дисперсионного взаимодействия 

изменяется по закону 



 72 

Д 6

1
V

r
 . 

2. Силы ориентационного взаимодействия. Этот вид 

взаимодействия может существовать между атомами и молекулами, 

которые уже в нормальном состоянии являются полярными, т.е. 

подобны электрическим диполям. В этом случае притяжение 

полярных молекул зависит от их ориентации. Поэтому такое 

взаимодействие, или притяжение, и получило название 

ориентационного взаимодействия. 

Энергия ориентационного взаимодействия изменяется с 

расстоянием по закону 

ор 6

1
V

r
 . 

При этом необходимо заметить, что если первое 

взаимодействие за счет дисперсионных сил не зависит от 

температуры, то ориентационное взаимодействие весьма сильно 

зависит от температуры. В частности, при повышении температуры 

такое взаимодействие ослабевает. 

3. Силы индукционного взаимодействия. Индукционное 

взаимодействие появляется между молекулами, обладающими высокой 

способностью к поляризации. У таких молекул может возникать 

индуцированный, или наведенный, электрический момент (дипольный 

момент). 

Энергия индукционного взаимодействия также изменяется по 

закону 

инд 6

1
V

r
 . 

Итак, энергия суммарного взаимодействия в случае сил Ван-

дер-Ваальса является суммой энергий всех трех видов 

рассмотренных взаимодействий 

ор видДV V V V   . 
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В табл.3.1 приведены значения доли участия каждого вида 

взаимодействия для случая различных веществ. 

 

Таблица 3.1 

 

Энергия взаимодействия, определяемая силами Ван-дер-

Ваальса, сравнительно мала по величине – V  10
3
 Дж/моль. 

 
ИОННАЯ СВЯЗЬ 

 

Классическим примером ионной связи (иначе она называется 

гетерополярной) является связь галоида с металлом, например, связь 

в соединении NaCl. В таких соединениях металл является 

положительным ионом (Na
+
), а галоид (Cl

˗
) – отрицательным ионом. 

Взаимодействие этих ионов чисто электростатическое и подчиняется 

закону Кулона. По порядку величины энергия взаимодействия ионной 

связи будет 

5
NaCl /10 Дж мольV . 

Следовательно, такая энергия будет на два порядка выше 

энергии взаимодействия Ван-дер-Ваальса. Ионный кристалл состоит 

не из молекул, а из ионов. Весь кристалл в целом можно 

рассматривать как одну гигантскую молекулу. 
АТОМНАЯ, ИЛИ ОБМЕННАЯ СВЯЗЬ 

 

Такая связь еще называется валентной (ковалентной) или 

гомеополярной, и определяет устойчивость таких соединений, как 

H2 и O2, а также связи в атомных решетках типа алмаза. Силы 

взаимодействия при гомеополярной связи имеют также 

электрический (но не кулоновский) характер. Объяснение этих сил 

может быть дано только в рамках квантовой механики. 

Вещество Взаимодействие, % 

Дисперсионное Ориентационное Индукционное 

H2O 

NH3 

HCl 

CO 

19 

50 

81 

100 

77 

45 

15 

- 

4 

5 

4 

- 
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Гомеополярная связь осуществляется электронными парами. 

Это означает, что в обеспечении связи между двумя атомами 

участвует по одному электрону от каждого атома. Поэтому 

гомеополярная связь имеет направленный характер. При 

гетерополярной связи каждый ион воздействует на все близкие к 

нему ионы. При гомеополярной связи воздействие направлено 

только на тот атом, с которым у данного атома имеется совместная 

электронная пара. Гомеополярная связь может осуществляться 

только валентными, т.е. наименее связанными с атомом 

электронами. Поскольку каждый электрон может обеспечить связь 

только с одним атомом, то число связей, в которых может 

участвовать каждый атом (число соседей, с которыми он может быть 

связан) равно его валентности. 

Типичными примерами атомных кристаллов могут служить 

алмаз и графит. Оба этих вещества построены из атомов углерода, 

но отличаются кристаллическим строением. Решетку типа алмаза 

имеют типичные полупроводники – германий (Ge) и кремний (Si). 

Для этой решетки характерно то, что каждый атом окружен 

четырьмя равноотстоящими от него соседями, расположенными в 

вершинах правильного тетраэдра. Каждый из четырех валентных 

электронов входит в валентную пару, связывающую данный атом с 

одним из соседей. 

 
МЕТАЛЛИЧЕСКАЯ СВЯЗЬ 

 

Во всех узлах кристаллической решетки расположены 

положительные ионы металла. Между ними беспорядочно, подобно 

молекулам газа, движутся электроны, отщепившиеся от атомов при 

образовании ионов. Эти электроны играют роль “цемента”, 

удерживая вместе положительные ионы; в противном случае 

решетка распалась бы под действием сил отталкивания между 

ионами. Вместе с тем и электроны удерживаются ионами в пределах 

кристаллической решетки и не могут ее покинуть. 

Большинство металлов имеют решетки одного из трех типов: 

кубическую объемноцентрированную, кубическую 

гранецентрированную и так называемую плотную гексагональную. 

Последняя представляет собой гексагональную решетку с 
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отношением c/a, равным 8 3 . Кубическая гранецентрированная и 

плотная гексагональная решетки соответствуют наиболее плотной 

упаковке одинаковых шаров. 

 
3.3. СТРУКТУРА КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ 

 

Твердые тела, имеющие кристаллическую структуру, 

представляют наибольший интерес с точки зрения создания 

различного рода электронных приборов. Вследствие 

трансляционной симметрии кристаллической решетки каждой точке 

элементарной ячейки кристалла можно сопоставить эквивалентную 

точку другой ячейки (рис.3.1). 

 

a2

a1
 

Рис.3.1 

Обычно в качестве таких точек выбираются определенные 

атомы (узлы) кристаллической решетки. Положения эквивалентных 

точек относительно некоторого произвольно выбранного основного 

узла характеризуются векторами решетки 

1 1 2 2 3 3n n n n  a a a a ,                                                  (3.1) 

где ni (i = 1, 2, 3) – положительные и отрицательные целые числа,  

аi– некомпланарные векторы, называемые векторами основных 

трансляций, а их модули, а1, а2, а3 являются основными периодами 

решетки. Совокупность всех векторов решетки называют 

трансляционной решеткой или решеткой Браве. Концы векторов 

решетки определяют положения узловых точек решетки Браве. С 

каждой такой точкой связана некоторая группа атомов разного типа, 



 76 

называемая базисом. Положение каждого из этих атомов в пределах 

элементарной ячейки задается базисным вектором 

1 2 3x zy  
  a a a                               (3.2) 

где 0 < xy, z < 1, 1 <  N, где N – число атомов базиса. 

Базис повторяется в пространстве и вместе с векторами 

решетки задает положение всех атомов кристалла и тем самым 

определяет кристаллическую структуру. 

Наименьший параллелепипед, построенный на векторах а1, а2, 

а3 называют примитивной ячейкой кристалла. Ее объем, очевидно, 

равен 

Vc = (a1[a2 a3]).                                       (3.3) 

На рис.3.2 изображен параллелепипед, последовательным 

перемещением которого вдоль трех своих осей может быть построен 

весь кристалл и, следовательно, его можно рассматривать в качестве 

элементарной ячейки кристалла. 

a3 c

a
1

a

a2 b

b


 

Рис.3.2 

В общем случае выбор векторов основных трансляций 

неоднозначен, и соответственно выбор элементарной ячейки также 

неоднозначен. В простейшем случае в качестве элементарной 

ячейки выбирают примитивную. В этом случае решетка называется 

простой (Р). В простой решетке на одну ячейку приходится один 

узел (Z = 1) 
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P                             I                                F                        C  

Рис.3.3 

Симметрия примитивной ячейки часто не полностью отражает 

симметрию решетки Браве в целом. В этих случаях обычно 

рассматривают более сложные элементарные ячейки, отражающие 

симметрию кристаллической структуры, но содержащие не один, а 

несколько узлов. Так, в объемно-центрированных решетках (I-типа) 

узлы расположены в вершинах и в центре параллелепипеда, и на 

каждую элементарную ячейку приходится по два узла (Z = 2). В 

гранецентрированных (F-типа) узлы расположены в вершинах и в 

центрах всех граней параллелепипеда и  Z=4. В базоцентрированных 

(C-типа) узлы расположены в вершинах параллелепипеда и в 

центрах двух противоположных граней и Z = 2. На рис.3.3 

изображены все три вида ячеек для решетки ромбической 

симметрии. 

Форма элементарной ячейки определяется шестью величинами: 

тремя сторонами параллелепипеда, а1 = а, а2 = b, a3 = c, и углами:  

между b и с, b между а и с, между a  и b. (рис.3.2). Они определяют 

точечную симметрию решетки Браве. По типу симметрии решетки 

подразделяются на семь кристаллических систем или сингоний : 1) 

Триклинная (Р): a b c,  b90
o
 (косоугольный 

параллелепипед); 2) моноклинная (Р,С):   a  b  c,   90
o
, b 90

o
 

(прямая призма, в ее основании параллелограмм); 3) ромбическая 

(или ортогональная) (P,C,I,F): a  b  c, b  = 90
o
 

(прямоугольный параллелепипед); 4) ромбоэдрическая (или 

тригональная) (P): a = b = c, b90
o
 (ромбоэдр); 5) 

тетрагональная (P,I): a = b  c, b = 90
o
 (квадратная призма); 

6) гексагональная (P): a = b  c,  = b= 90
о
 ,  = 120

o
 (прямая призма, 

в ее основании – ромб); 7) кубическая (P,I,F): a = b = c, b= 90
o
 

(куб). В скобках указаны символы ячеек P,C,I,F. 
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Таблица 3.2 
 

Сингония 

Тип решетки 

Примитивная Базоцентриров

анная 

Объемно-

центрированна

я 

Гране-

центрирова

нная 

Триклинн

ая 

 

   

Моноклин

ная 

  

  

Ромбичес

кая 

    
Тригональ

ная 

(ромбоэдр

ическая) 

 

   

Тетрагона

льная 

 

 

 

 

Гексагона

льная 

 

   

Кубическ

ая 
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Каждой сингонии, как указано выше, соответствует одна или 

несколько решеток Браве, а всего существует 14 различных решеток 

Браве, которые разделяются на 7 сингоний (табл.3.2). 

Рассмотрим для примера кубическую решетку. В этом случае 

а1= а2= а3 = а, где а – постоянная решетки. 

Для простой кубической решетки расстояние d между 

ближайшими соседними одинаковыми атомами равно а (d=a). 

Для объемноцентрированной 

3
2

d a . 

Для гранецентрированной 

2
2

d a . 

Вычислим плотность кристалла, состоящего из атомов одного 

сорта. Масса, приходящаяся на одну элементарную ячейку, равна: 

mэл = m0Z, где m0 = NA – масса одного атома,  – молекулярная 

масса, NA – число Авогадро. Число элементарных ячеек в единице 

объема 

NV =  /mэл = m0Z) = NAZ), 

где  – плотность кристалла. Объем одной элементарной ячейки:    

Vc = 1/NV. С другой стороны, для решетки кубической сингонии      

Vc = a
3
, где а – параметр решетки. Следовательно, 

3

A

Za
N




 

или 

3
A

Z

N a


 

                                           (3.4) 

 
3.4. ГЕОМЕТРИЧЕСКИЕ ЭЛЕМЕНТЫ КРИСТАЛЛА. ВЕКТОР 

ОБРАТНОЙ РЕШЕТКИ 

 

Если заданы основные векторы решетки, а1, a2, а3, то 

положение любого узла решетки, согласно формуле (3.1), 
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определяется заданием трех целых чисел, n1, n2,n3,  которые 

называются индексами узла и записываются в виде: [[n1,n2,n3]]. 

Направление в кристалле – прямая, проходящая через начало 

координат и один из узлов. Оно однозначно определяется индексами 

ближайшего к началу координат узла, через который проходит эта 

прямая, и обозначается: [n1,n2,n3]. Плотность атомов (число узлов на 

единицу длины) в разных направлениях может быть различной, что 

и определяет анизотропию кристалла. 

Любые три узла решетки, не лежащие на одной прямой, 

определяют кристаллическую плоскость. Эта плоскость, очевидно, 

содержит бесчисленное множество узлов. Уравнение любой 

плоскости, в том числе и кристаллической, можно записать в виде 

(r b) = 1,                                            (3.5) 

где r (x,y,z) – текущие координаты точки плоскости, b – постоянный 

вектор, перпендикулярный данной плоскости. Расстояние плоскости 

от начала координат: D = 1/|b|. В случае кристаллической плоскости 

(а только такая плоскость представляет интерес) вектор b удобно 

выбирать в виде разложения 

b = q1b1 + q2b2 + q3b3                              (3.6) 

по основным векторам обратной решетки bi (i = 1, 2, 3), 

определяемым соотношениями 

b1 = Vc
-1

[a2 a3],    b2 =
 
Vc

-1
[a3a1],    b3 = Vc

-1
[a1a2]           (3.7) 

Из (3.7) и (3.3) следует (аibi) = 1, (i = 1, 2, 3). В частности, при 

b 90
o
 (кубическая, тетрагональная, ромбическая системы)  

bi = ai
- 1

  и каждая пара векторов, ai и bi , направлена в одну и ту же 

сторону, соответственно вдоль осей x, y, z. 

Координаты любого узла решетки записываются в виде 

x = n1a1,     y = n2a2,     z = n3a3,                         (3.8) 

где ni(i = 1, 2, 3) – целые числа. Подставляя (3.6) и (3.8) в (3.5) с 

учетом (3.7), получаем 

n1q1 + n2q2 + n3q3 = 1                                  (3.9) 

Поскольку ni – целые числа, равенство (3.9) возможно лишь 

при условии, что qi – рациональные числа 
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q1 = h/q,    q2 = k/q,     q3 = l/q ,                           (3.10) 

где h, k, l – взаимно простые (не имеющие общего делителя) целые 

числа, называемые индексами Миллера. Они записываются в виде 

(hkl) и определяют направление вектора b и, следовательно, систему 

перпендикулярных этому вектору и параллельных между собой 

плоскостей, каждая из которых характеризуется определенным 

значением q = 1, 2, 3,… Умножая (3.9) на q, получаем 

n1h + n2k + n3l = q. 

Таким образом, любая кристаллическая плоскость задается 

совокупностью индексов: {(hkl), q}. При q = 0 соответствующая 

плоскость проходит через начало координат. 

Если система плоскостей параллельна какой-либо из осей 

координат, то соответствующий индекс Миллера равен нулю. Так, 

плоскость (110) параллельна оси z, а плоскость (100) параллельна 

координатной плоскости (yz). Индексы Миллера наиболее важных 

плоскостей в кубическом кристалле показаны на рис.3.4. 

Расстояние D плоскости с индексом q от начала координат 

согласно (4.6) равно 

D = 1/b = q/b0,                                     (3.11) 

где b0 = hb1 + kb2 + lb3, b =|b|, b0 = |b0|. 

Из (3.11) следует, что расстояния d между соседними 

плоскостями (q =1) равны между собой 

d = 1/b0 = (h
2
b1

2 
 + k

2
b2

2
 + l

2
b3

2
)

 –1/2 
                   (3.12) 

 

Рис.3.4 
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Кристаллические плоскости отсекают на осях координат 

отрезки, равные 

xq = a1q/h,          yq = a2q/k,            zq = a3q/l.              (3.13) 

Очевидно, что если q/h, q/k и q/l – целые числа, то 

соответствующая плоскость пересекает координатные оси в узловых 

точках. 

 
3.5. ТЕПЛОВЫЕ СВОЙСТВА КРИСТАЛЛОВ 

 
ТЕПЛОЕМКОСТЬ КРИСТАЛЛОВ 

 

Тепловые свойства кристаллов обусловлены в основном 

колебаниями кристаллической решетки. При температуре Т = 0 

согласно классической теории атомы можно считать неподвижно 

“закрепленными” в узлах кристаллической решетки. При Т > 0 они 

совершают колебания относительно положений равновесия. 

Амплитуда таких колебаний при обычных температурах составляет 

незначительную часть расстояния между атомами (~ 0,05 a0). В 

классической теории твердое тело рассматривается как 

совокупность независимых друг от друга частиц, каждая из которых 

обладает тремя степенями свободы. С учетом кинетической и 

потенциальной энергии на каждую степень свободы приходится 

средняя энергия кТ. Таким образом, внутренняя энергия одного моля 

кристалла составляет 

E = 3NAkT = 3RT 

Соответственно молярная теплоемкость (количество тепла, 

необходимое для нагревания одного моля вещества на 1 К) 

C = dE/dT = 3R = 25 Дж/К·моль                     (3.1) 

Этот закон был установлен экспериментально в 1819 г. 

Дюлонгом и Пти и ему удовлетворяет большинство твердых тел при 

обычных температурах (несколько сотен К). Он остается справедливым 

и в том случае, если учитывается взаимная связь атомов в решетке. 

Однако при понижении температуры теплоемкость быстро 

уменьшается и стремится к нулю при Т  0. Такая зависимость может 
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быть объяснена только на основе представлений о квантовании 

колебаний кристаллической решетки. 

Согласно квантовой теории, колебания кристаллической 

решетки могут возбуждаться и поглощаться только порциями 

(квантами). Кванты колебательной энергии называются фононами. 

Фононы можно рассматривать как квазичастицы с энергией ЕФ =h и 

импульсом p = hk, где |k| = /u, u – скорость распространения 

колебаний в кристалле. Согласно статистике Бозе-Эйнштейна, в 

термодинамическом равновесии среднее число n  фононов частоты  

на каждую степень свободы равно 

/

1

1
kT

n
e





.                                      (3.2) 

Следовательно, энергия одного моля кристалла 

/

3
3

1
kT

N
nNE

e


 


 



                              (3.3) 

и 

 

 

2 /

2
/

3

1

kT

kT

kΤd E e
kC N

dT e











 



.                       (3.4) 

Эта формула впервые была получена Эйнштейном в 1907 г. 

Она качественно правильно учитывает ход теплоемкости при низких 

температурах (kT << h ) и переходит в формулу (7.1) при высоких 

температурах (kT >> h ). Однако характер зависимости 

теплоемкости от температуры при Т 0 

/2 kTeC T
                                          (3.5) 

противоречит опытным данным: 3
C T

. Это противоречие 

обусловлено предположением, что все атомы твердого тела 

совершают колебания с одной и той же частотой и независимо друг 

от друга. Однако в твердом теле нельзя рассматривать атомы как 

независимые, поскольку само удержание атомов около положений 

равновесия есть результат взаимодействия атомов между собой. 
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Количественное согласие с опытом было достигнуто Дебаем в 

1912 г. Он учел коллективное движение атомов, приводящее к 

распространению звуковых волн в твердом теле. В системе из N 

атомов возникает в общем случае 3N колебаний (стоячих волн) с 

тремя различными поляризациями и различными частотами i, 

называемых нормальными колебаниями или модами. 

Каждое из 3N нормальных колебаний (осцилляторов) играет 

роль степени свободы кристалла. Для вычисления полной энергии 

колебаний требуется ввести функцию плотности распределения мод 

по частотам, g(). Значение величины dN = g()d равно числу 

мод в интервале частот от  до  + d, а значение g() – числу мод 

на единичный интервал частот. Для вычисления g нужно учесть, 

что в кристалле возникают стоячие волны, вследствие чего волновой 

вектор k может принимать только дискретный ряд значений. В 

кристалле в виде куба объемом V = L
3
 возникают стоячие волны, 

удовлетворяющие периодическим граничным условиям, вследствие 

чего длина волны принимает значения:  = L, L/2, L/3,… По 

определению, для каждой компоненты волнового вектора кx, кy, кz = 

+ 2, вследствие чего кx, кy, кz = 0, +2/L, +4L,…. Таким образом, 

на каждое разрешенное значения волнового вектора k приходится 

объем в k-пространстве, равный V0k = (2/L)
3
 = 8

3
/V. С другой 

стороны, интервалу частот d соответствует интервал волновых 

чисел dk – сферический слой в трехмерном k-пространстве, объем 

которого равен 

dVk = 4k
2
dk.                                        (3.6) 

Число различных значений k, попадающих в этот слой, можно 

получить, поделив объем этого слоя, dVk, на элементарный объем, 

V0k 

2

2
( )

2

dk
kVdN k




.                                    (3.7) 

Учитывая связь  и k, k = /v, где v – скорость 

распространения упругих (звуковых) волн в кристалле, получим 

2

2 3
( )

2

V d
dN



 
 

v
.                                       (3.8) 
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Каждая волна частоты , распространяющаяся в упругой 

среде, имеет три типа поляризаций – две поперечные и одну продоль 

ную. В изотропном случае скорости распространения обеих 

поперечных волн одинаковы, 
v v . Скорость v  распространения 

продольной волны, как правило, несколько выше, 
v v . Таким 

образом, полное число колебаний на интервал d будет равно 

3 3
2

2

1 2

( )
2

dN V d






  
v v .                             (3.9) 

Умножая (3.9) на среднюю энергию нормального колебания 

при температуре Т 

/
1

kT
Τ

e





   



,                                 (3.10) 

получим выражение для энергии, приходящейся на интервал частот 

(,  + d) 

 

3 3
3

2

1 2

( )
2 1kΤ

dE V d
e







  


v v .                      (3.11) 

 Для вычисления полной энергии колебаний кристалла 

необходимо проинтегрировать выражение (3.11) по всем частотам. 

Из физических соображений вытекает, что для дискретной цепочки 

атомов длина волны колебаний не может быть меньше удвоенного 

значения расстояния между атомами. Соответственно существует 

максимальная частота, max, по порядку величины равная 

отношению среднего значения скорости звука  v  к среднему 

значению постоянной решетки a  . Величина max называется 

частотой Дебая и обозначается max = D. Для более точного 

определения D проинтегрируем (3.9) по всем частотам вплоть до 

D. В результате мы должны получить полное число колебаний, 

которое равно 3N, где N – полное число атомов кристалла. Таким 

образом, имеем 
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3
2 3 2

2 3

0 0

3 ( ) 3 (2 )
2

D D

DVN dN V d
 


     

   v
v

,        (3.12) 

откуда 

2
3 3 26

6D

N
n

V


      v v ,                       (3.13) 

где n = N/V – концентрация атомов,  v  – средняя скорость звука, 

определяемая соотношением 

3 3 3

3 2 1



 
 v v v

. 

Интегрируя (3.11) по всем частотам вплоть до D, и полагая N = NA, 

получим полную энергию колебаний решетки для одного моля 

D 3

3
D 0

9

1

A

kΤ

N d
E

e



 

 


 
.                                (3.14) 

Теплоемкость кристалла получим, продифференцировав (3.14) 

по температуре: С = dE /dT. 

 
D

23 4

0

( / ) 1( ) 9
xx

x
e x eTT R dxC



   
,                   (3.15) 

где R = NAk = 8,31 Дж/K·моль – универсальная постоянная, 

/D k  – характеристическая температура Дебая, хD = /T. 

Температуру Дебая для разных веществ определяют 

экспериментально из измерений теплоемкости в области низких 

температур. Так, например, для Al: = 396 K, для Cu:  =309 K. 

При T <<  xD , и из (3.15) получаем 

C(T) = 12

 R/5 (T/)

3
 = 234R (T/)

3
                   (3.16) 

т.е. в этом случае в соответствии с экспериментальными данными 

теплоемкость пропорциональна кубу температуры. Эта зависимость 

известна как закон Т
3
 Дебая. 
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При T >>  интеграл в (3.15) равен хD
3
/3 и C = 3R согласно 

классическому закону Дюлонга и Пти. Типичный график 

зависимости С от Т представлен на рис.3.5. 

Для тел с простыми 

кристаллическими 

решетками формула Дебая 

(3.15) хорошо согласуется с 

экспериментом как в 

области высоких, так и в 

области низких температур. 

В случае металлов к 

теплоемкости за счет 

колебаний кристаллической 

решетки добавляется 

теплоемкость за счет свободных электронов. При обычной 

температуре она составляет ничтожную часть решеточной 

теплоемкости. Однако при достаточно низкой температуре она 

убывает пропорционально первой степени Т, а не Т
3
, и играет 

главную роль по сравнению с решеточной. 

 
РЕШЕТОЧНАЯ ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ТЕЛ 

 

Если в кристалле создать разность температур, то перенос 

тепла от более нагретого конца к менее нагретому обусловлен 

диффузией фононов. Поток тепловой энергии Q, проходящей через 

поперечное сечение стержня в единицу времени в направлении оси  

х, равен 

dT
Q

dx
  ,                                        (3.17) 

где – коэффициент теплопроводности, при расчете которого 

необходимо учитывать взаимодействие между фононами, т.е. 

рассеяние их друг на друге, обусловленное ангармонизмом 

колебаний решетки. По аналогии с кинетической теорией газов 

можно показать, что  

V
ф

3

lC
  v ,                                      (.18) 

Рис.3.5 
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где vФ – групповая скорость фононов, l – средняя длина свободного 

пробега фононов между двумя последовательными столкновениями, 

СV – теплоемкость единицы объема. 

В области высоких температур, как показано выше, СV 

практически не зависит от 

температуры, а длина 

свободного пробега должна 

быть обратно 

пропорциональна их 

концентрации n, которая, 

согласно статистике Бозе-

Эйнштейна (3.2), при 

высоких температурах 

пропорциональна Т: n ~ T. 

Следовательно, 

коэффициент теплопроводности должен быть обратно 

пропорционален температуре, что качественно согласуется с 

опытом. При температурах ниже дебаевской l практически не 

зависит от Т, и теплопроводность целиком определяется 

зависимостью от Т теплоемкости кристалла СV ~ T
3
, поэтому при 

низких температурах  ~ T
3
. Характерная зависимость 

теплопроводности от температуры показана на рис. 3.6. 

 В металлах помимо решеточной теплопроводности 

необходимо учитывать также и теплопроводность за счет переноса 

теплоты свободными электронами. Именно ею объясняется высокая 

теплопроводность металлов по сравнению неметаллами. 

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.6 
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Глава 4. ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ 

 
4.1. ПОНЯТИЕ ОБ ЭНЕРГЕТИЧЕСКИХ ЗОНАХ 

 

Выше было показано, что в атоме электрон может обладать не 

любой энергией, а некоторым, вполне конкретным набором ее 

значений. А что получается, когда атомы образуют твердое тело? 

Атомы большинства веществ, находящихся в твердом 

состоянии, образуют периодическую решетку, которую мы 

воспринимаем как кристалл. Механизм, связывающий атомы в 

молекулы, может связывать их в 

неограниченной периодической 

структуре или в сверхмолекуле. Пусть 

первоначально имеется N 

изолированных атомов какого-либо 

вещества.  

Пока атомы изолированы друг 

от друга,т.е. существуют независимо, 

они имеют полностью совпадающие 

схемы энергетических уровней      

(рис. 4.1). 

Заполнение уровней 

электронами осуществляется в 

каждом атоме независимо друг от 

друга. По мере сближения атомов между ними возникает все 

усиливающееся взаимодействие, которое приводит к изменению 

положения уровней.Вместо одного, одинакового для всех N атомов, 

уровня возникает N очень близких 

по энергии уровней. Таким 

образом, каждый уровень в 

изолированном атоме 

расщепляется в кристалле на N 

близко расположенных уровней, 

Рис. 4.1 
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образуя зону энергий (точнее, зону энергетических состояний). 

Внутри зоны энергия электрона изменяется квазинепрерывно, 

так как энергетическая разность между уровнями очень мала. Она 

равна ширине зоны, деленной на количество N уровней в зоне. 

Поскольку ширина зон порядка 1 эВ, а N~10
20

 см
-3
, энергетическая 

разность между уровнями, действительно, столь мала, что 

дискретность энергетического спектра электрона в кристалле в 

пределах одной зоны в большинстве случаев можно не принимать во 

внимание. Зоны разрешенных значений энер-гии разделены зонами 

значений энергии, которые электрон иметь не может. 

Размеры и положение этих зон зависят от типа связи атомов в 

кристаллле. Связь бывает ионная, ковалентная и металлическая. 

Наибольшими значениями энергии обладают 

в атомах, естественно, последние электроны, 

т.е. наиболее слабо связанные с атомами. В 

кристаллах из уровней этих последних 

электронов и образуются наиболее 

высокоэнергетичные зоны. Именно 

электроны, находящиеся в этих зонах, и 

определяют свойства твердых тел. 

Величина расщепления для разных 

уровней не одинакова. Сильнее расщепляются 

уровни, заполненные в атоме внешними электронами. Уровни, 

заполненные внутренними электронами, возмущаются и, 

следовательно, расщепляются мало. На рис. 4.2 показано 

расщепление уровней в зависимости от расстояния r между атомами. 

Из схемы видно, что возникающее в кристалле расщепление уровней, 

занятых внутренними электронами, очень мало. Заметно 

расщепляются лишь уровни, занимаемые валентными электронами. 

Так же расщепляются и более высокие уровни, не занятые 

электронами в основном состоянии атома. 

В зависимости от конкретных свойств атомов равновесное 

расстояние между соседними атомами в кристалле может быть либо 

типа r1, либо типа r2 (см. рис. 4.2). При расстоянии типа r1 между 

разрешенными зонами, возникшими из соседних уровней атома, 

имеется запрещенная зона. При расстоянии типа r2 происходит 

перекрывание соседних зон. Число уровней в такой слившейся зоне 

Рис. 4.3 
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равно сумме числа уровней, на которые расщепляются оба уровня 

атома.  

Зонная структура энергетических уровней получается 

непосредственно из решения уравнения Шредингера для электрона, 

движущегося в периодическом силовом поле. Это поле создается 

решеткой кристалла. Уравнение Шредингера, с учетом этого 

периодического поля решетки имеет вид 

 EU
m

2
2

2

 , 

где U – функция, обладающая свойствами: 

U(x+a,y,z)=U(x,y,z), 

U(x,y+b,z)=U(x,y,z), 

U(x,y,z+c)=U(x,y,z) 

(a,b,c – периоды решетки вдоль осей x,y,z). 

 

 
Блох доказал, что решение уравнения Шредингера с 

положительным потенциалом имеет вид 

Рис. 4.4 

         

 

                          У 
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e)(ukk
ikr

r ,                                       (4.1) 

где uk(r) – периодическая функция, период которой равен периоду 

решетки. 

Решения (4.1) называются функциями Блоха. 

Для свободного электрона зависимость энергии от волнового 

числа описывается графиком, изображенным на рис. 4.3. 

Значения энергии образуют квазинепрерывную 

последовательность. Следовательно, график E(k) состоит из 

дискретных точек. Однако, эти точки расположены так густо, что 

зрительно сливаются в сплошную кривую. 

В случае периодического поля зависимость Е от k имеет вид, 

представленный на рис. 4.4. Из рисунка видно, что изображенные 

сплошными линиями зоны квазинепрерывно изменяющейся энергии 

(разрешенные зоны) чередуются с запрещенными зонами. Каждая 

разрешенная зона состоит из близкорасположенных дискретных 

уровней, число которых равно количеству атомов в образце 

кристалла. 

Область значений волнового числа k, внутри которой энергия 

электрона в кристалле изменяется квазинепрерывно, называется 

зоной Бриллюэна. На границах зон энергия терпит разрыв. Рис. 4.4 

изображает зоны Бриллюэна в случае одномерного кристалла. Для 

трехмерных кристаллов границами зон Бриллюэна являются 

замкнутые многогранные поверхности, заключенные одна внутри 

другой. 

 
4.2. ДЕЛЕНИЕ ТВЕРДЫХ ТЕЛ НА ПРОВОДНИКИ, ДИЭЛЕКТРИКИ 

И ПОЛУПРОВОДНИКИ 

 

Итак, спектр возможных значений энергии валентных электронов в 

кристалле распадается на ряд разрешенных и запрещенных зон. 

Ширина зон не зависит от размеров кристалла. Таким образом, чем 

больше атомов содержит кристалл, тем теснее располагаются 

уровни в зоне. Ширина разрешенных зон имеет величину порядка 

нескольких электронвольт. Следовательно, если кристалл содержит 

10
23

 атомов, то расстояние между соседними уровнями в зоне 

составляет ~ 10
-23

 эВ. 
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Каждый энергетический уровень отвечает определенному 

значению k. Поскольку спиновое квантовое число ms может 

принимать два значения, на любом энергетическом уровне могут 

находиться два электрона с противоположными спинами. 

 

Рис. 4.5 

Все твердые тела делятся по своим электрическим свойствам 

на три группы – металлы, диэлектрики и полупроводники.  Это 

разделение можно объяснить с точки зрения зонной теории, т.е. с 

точки зрения существования энергетических зон. 

Примерная схема верхних энергетических зон изображена на 

рис. 4.5. Нижняя зона образована из уровней основных состояний 

валентных электронов (n = 1, первая орбита), и называется валентной 

зоной. При абсолютном нуле валентные электроны заполняют попарно 

нижние уровни валентной зоны. Более высокие разрешенные зоны 

свободны от электронов. В зависимости от степени заполнения 

электронами валентной зоны и от ширины запрещенной зоны 

возможны три случая. 

В случае а) электроны заполняют валентную зону не 

полностью. Электронам, находящимся на верхних уровнях, 

достаточно сообщить совсем небольшую энергию (~10
-23

 10
-22

 эВ) 

для того, чтобы перевести их на более высокие уровни. Энергия 

теплового движения (kT) составляет при 1 К величину порядка 10
-4

 

эВ. Следовательно, при температурах, отличных от абсолютного 

нуля, часть электронов будет переходить на более высокие уровни. 

Запрещенная зона 

Валентная зона 
 (зона проводимости) 

Заполненная 
валентная зона 

Заполненная 
валентная зона 

Свободная зона 
 (зона проводимости) 

Запрещенная зона 

Δ E 

 

Свободная зона Свободная зона 

Запрещенная зона  

в) диэлектрик 

ΔE 

а) металл б) полупроводник 
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Электроны могут также переходить на более высокие уровни 

под действием какой-либо другой дополнительной энергии, 

например приложенного электрического поля. Электроны могут 

ускоряться электрическим полем и приобретать дополнительную 

скорость в направлении, противоположном направлению вектора 

напряженности электрического поля. 

Такая схема энергетических уровней имеет место в металлах, 

поэтому металлы хорошо проводят ток. 

Валентная зона в металлах называется также зоной 

проводимости, поскольку электроны, находящиеся в этой зоне, 

двигаются под действием сил электрического поля упорядоченно, 

образуя ток проводимости. Поэтому они называются свободными 

электронами, хотя на самом деле они квазисвободны, так как 

движутся в периодическом поле кристаллической решетки. 

Частичное заполнение зоны проводимости наблюдается в тех 

случаях, когда на последнем занятом уровне в атоме находится 

только один электрон или когда имеет место частичное 

перекрывание зон (рис. 4.2, расстояние r2). В первом случае N 

электронов заполняют попарно только половину уровней валентной 

зоны. Во втором случае число уровней в зоне проводимости будет 

больше N, так что даже если количество электронов проводимости 

равно 2N, они все равно не смогут заполнить все уровни зоны. 

В случаях б) и в) все уровни валентной зоны полностью 

заняты электронами – зона заполнена. В этом случае электрические 

свойства кристалла определяются шириной запрещенной зоны . 

Если эта ширина невелика (порядка нескольких десятых 

электронвольта), то энергии теплового движения оказывается 

достаточно для того, чтобы часть электронов "забросить" в 

свободную верхнюю зону. Там они становятся электронами 

проводимости. 

Поскольку с увеличением температуры энергия теплового 

движения электронов также увеличивается, то увеличивается число 

электронов проводимости, поэтому проводимость таких кристаллов 

растет с ростом температуры. 

Одновременно с увеличением числа электронов проводимости 

становится возможным переход электронов в валентной зоне на 
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освобождающиеся верхние уровни. Такой кристалл называется  

электронным полупроводником. 

Если ширина запрещенной зоны Е велика (порядка 

нескольких электронвольт), энергии теплового движения 

оказывается недостаточно, чтобы забросить в свободную зону 

необходимое для проводимости число электронов. В этом случае 

кристалл оказывается диэлектриком (изолятором). 

 
4.3. ДВИЖЕНИЕ ЭЛЕКТРОНА В ПОЛЕ КРИСТАЛЛИЧЕСКОЙ 

РЕШЕТКИ. ПОНЯТИЕ ОБ ЭФФЕКТИВНОЙ МАССЕ ЭЛЕКТРОНА 
 

Волновое число k связано с импульсом p электрона равенством 

p=ħk. Заменив в соотношении неопределенностей ~xp   импульс 

через волновое число, получим соотношение неопределенностей для k 

и x 

1~xk  .                                           (4.2) 

Из этого соотношения следует, что при точно определенном 

значении волнового числа k положение электрона в кристалле будет 

совершенно неопределенным. Для того чтобы можно было изучать 

динамику электрона в кристалле, необходимо располагать 

выражениями для его скорости и ускорения. О скорости же можно 

говорить лишь в том случае, если электрон будет хотя бы 

приближенно локализован в пространстве. 

Положим  k отличным от нуля. Тогда электрон будет 

локализован в пределах области  Согласно принципу 
суперпозиции, волновая функция электрона может быть 

представлена в виде суммы плоских волн вида e
ikr
, значения 

волновых чисел которых заключены в пределах k. Если k 

невелико, то суперпозиция плоских волн образует волновой пакет. 

Максимум амплитуды результирующей волны перемещается с 

групповой скоростью 

dk

d
гр


v .                                            (4.3) 
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Наиболее вероятное местонахождение электрона совпадает с 

положением центра группы волн. Следовательно, vгр представляет 

собой скорость электрона в кристалле. 

Воспользовавшись соотношением  E , заменим в (4.3) 

частоту через энергию, получим 

dk

dE
гр



1
v .                                         (4.4) 

Выясним, как будет вести себя электрон под действием 

наложенного на кристалл внешнего электрического поля. В этом 

поле, кроме сил, создаваемых полем решетки, на электрон будет 

действовать электрическая сила F, работа которой за время dt равна 

dA=Fvгрdt, т.е. 

dt
dk

dEF
dA 


.                                      (4.5) 

Эта работа идет на приращение энергии электрона в 

кристалле: dA=dE. Заменив в (4.5) dA на dE и приняв во внимание, 

что dE=(dE/dk)dk , придем к соотношению 

dt
dk

dEF
dk

dk

dE



. 

Отсюда следует, что 



F

dt

dk
 .                                            (4.6) 

Продифференцировав выражение (4.4) по времени, найдем 

ускорение электрона в кристалле 

dt

dk

dk

Ed

dk

dE

dt

d

dt

d гр











2

211



v . 

Приняв во внимание (4.6), получим 



F

dk

Ed

dt

d гр


2

21v

 

Эту формулу можно переписать следующим образом 
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F
dt

d

dk/Ed

гр








 v
22

2
 .                               (4.7) 

Из (4.7) следует, что ускорение электрона в кристалле 

пропорционально величине внешней силы F, обусловленной 

действием приложенного внешнего электрического поля. 

Сопоставляя (4.7) с уравнением второго закона Ньютона 

F
dt

d
m 
v , 

можно сделать вывод о том, что выражение 

dk/Ed
m

*

22

2


                                        (4.8) 

формально играет по отношению к внешней силе F роль массы, в связи 

с чем величину (4.8) называют эффективной массой электрона в 

кристалле. 

Эффективная масса m* может сильно отличаться от 

фактической массы электрона m. В частности, она может принимать 

отрицательные значения. Это обусловлено тем обстоятельством, что 

в действительности на электрон действует не только сила внешнего 

электрического поля, но и периодическая сила со стороны 

кристаллической решетки. Поэтому уравнение второго закона 

Ньютона более точно следует записать так 

FF  крист
dt

d
m
v ,                                     (4.9) 

где Fкрист – сила, обусловленная действием на электрон 

периодического поля решетки. Сопоставление (4.9) с уравнением 

F
dt

d
*m
v  

наглядно показывает, что m* может существенно отличаться от m. 

Несмотря на это, именно значение m* определяет характер 

движения электрона в решетке под действием силы F. Введение 

эффективной массы позволяет, абстрагируясь от взаимодействия 

электронов с решеткой, определить характер движения электрона 
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под действием внешнего поля. Приписав электрону массу m*, мы 

можем исследовать поведение электронов под действием силы F, 

считая его свободным. 

Из сказанного следует, что соотношения, полученные для 

свободных электронов, справедливы также и для электрона, 

движущегося в периодическом поле, если заменить истинную массу 

m эффективной массой m*. 

Зависимость эффективной массы m от "местоположения" 

электрона внутри разрешенной энергетической зоны 

иллюстрируется рис. 4.6. Вблизи "дна" зоны (см. точки A и A') ход 

кривой E(k) мало отличается от хода кривой для свободных 

электронов (см.   рис. 4.3). 

Соответственно, m*≈m. 

В точке перегиба (B) 0
2

2


dk

Ed . 

Следовательно, m* обращается в 

бесконечность. Это означает, что на 

движение электрона, находящегося в 

состоянии с энергией EB, внешнее поле 

не может оказать никакого воздействия. 

Вблизи "потолка" разрешенной 

зоны (точка С) производная 

отрицательна: 0
2

2


dk

Ed  (т.е. 
dk

dE  с 

ростом k уменьшается). В соответствии с этим эффективная масса 

m* электронов, занимающих уровни вблизи потолка зоны, 

оказывается отрицательной. 

Фактически это означает, что под совместным действием сил 

внешнего поля и кристаллической решетки электрон, находящийся в 

состоянии с энергией EC, получает ускорение, противоположное по 

направлению внешней силе электрического поля. 

 
4.4. ПРОВОДИМОСТЬ ПОЛУПРОВОДНИКОВ 

 

Полупроводниками являются кристаллические вещества, у 

которых валентная зона полностью заполнена электронами             

(рис. 4.5, б), а ширина запрещенной зоны невелика (у собственных 

Рис. 4.6 
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полупроводников не более 1 эВ). Название – полупроводники – 

говорит само за себя: это вещества, обладающие некоторой 

электропроводностью, т.е. отличающиеся от диэлектриков, но эта 

электропроводность существенно меньше, чем у металлов. Иначе 

говоря, они занимают промежуточное положение между 

диэлектриками и металлами. 

Существенным отличием полупроводников от металлов 

является не сама величина электропроводности, а различная 

зависимость электропроводности от температуры: у металлов она 

уменьшается с ростом температуры, а у полупроводников наоборот 

– возрастает. 

Полупроводники по типу проводимости делятся на 

собственные и примесные. 

Собственной проводимостью обладают все химически чистые 

полупроводники. При абсолютном нуле все уровни валентной зоны 

таких веществ заполнены полностью (рис.4.7, а), а в зоне 

проводимости электроны отсутствуют. Под действием сил 

электрического поля электроны не могут перескочить через 

запрещенную зону и попасть в зону проводимости. Следовательно, 

при абсолютном нуле проводимость равна нулю, как у 

диэлектриков. С повышением  температуры тепловой энергии 

электронов становится достаточно, чтобы часть их начала 

переходить с верхних уровней валентной зоны на нижние уровни 

зоны проводимости (рис.4.7, б). Как следствие проводимость 

появляется и начинает расти с ростом температуры. 

 

 

Рис.4.7 

Запрещенная зона 

Валентная 
зона 

Зона 
проводимости 

 E  E 

б) a) 
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Проводимость увеличивается не только за счет появления 

новых электронов в зоне проводимости, но также за счет появления 

вакансий, т.е. свободных мест на верхних уровнях валентной зоны. 

Эти вакансии появились на уровнях, ранее занимавшихся 

электронами, перешедшими теперь в зону проводимости. 

Оставшиеся в валентной зоне электроны получают некоторую 

свободу перемещения в пределах этой зоны, т.е. создают ток, и этот 

ток эквивалентен тому току, который создавали бы частицы с 

зарядом, равным по величине заряду электрона, но с 

положительным знаком. Такие квазичастицы получили название 

дырок. 

Конечно, движение дырки не является движением реальной 

положительно заряженной частицы. В конечном счете, движение 

дырок сводится к перераспределению электронов, оставшихся в 

валентной зоне. 

 
СОБСТВЕННАЯ ПРОВОДИМОСТЬ 

 

Таким образом, собственная проводимость возникает 

вследствие перехода электронов в зону проводимости и появления 

на их месте вакантных мест – дырок. Распределение электронов по 

уровням валентной зоны описывается при помощи функции Ферми-

Дирака 

1

1






kT

FEE

e

)E(F
.                                   (4.10) 

Анализ этой функции показывает, что при температуре 

абсолютного нуля она имеет следующий вид 

F(E) = 1,   если   E < EF, 

и                                                                                                          (4.11) 

F(E) = 0,   если   E > EF. 

Величина EF, имеющая размерность энергии, называется 

уровнем Ферми или энергией Ферми. Иногда его также называют 

химическим потенциалом и обозначают символом  Из (4.11) 
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видно, что при температуре абсолютного нуля уровень Ферми 

совпадает с верхним заполненным электронами уровнем EF(0).  

Функция распределения при абсолютном нуле показана на           

рис. 4.8, а. 

При температурах, отличных от абсолютного нуля, график 

функции (4.10) имеет вид, показанный на рис.4.8, б. Следует 

отметить, что независимо от значения температуры, при E = EF 

функция f(E) равна ½, поэтому, уровень Ферми совпадает с 

величиной энергетического уровня, вероятность заполнения 

которого равна 0,5. 

При достаточно больших энергиях (т.е. при E-EF >> kT, что 

выполняется в области "хвоста" кривой распределения) единицей в 

знаменателе функции можно пренебречь. Тогда распределение 

электронов по состояниям с различной энергией принимает вид 

kT

E

kT

FEE

ee)E(F





 const ,                          (4.12) 

т.е. переходит в функцию распределения Больцмана, с которой мы 

уже встречались в разделе "Молекулярная физика" настоящего 

курса. 

Заметное отличие кривых, изображенных на рис. 4.8, а и б, 

друг от друга наблюдается лишь в области порядка kT. Чем выше 

температура, тем более полого идет ниспадающий участок кривой. 

Поведение электронного газа в сильной степени зависит от 

соотношения между температурой кристалла и температурой 

Ферми, равной EF/k. Возможны два предельных случая 

1. kT << EF. В этом случае электронный газ называется  

вырожденным. 

2. kT >> EF. В этом случае электронный газ называется  

невырожденным. 

а)                                                           б) 
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Рис. 4.8 

Температура Ферми для металлов составляет несколько 

десятков тысяч Кельвин. Поэтому электронный газ в металлах 

практически всегда, вплоть до температуры плавления, является 

вырожденным. 

В полупроводниках же плотность свободных электронов 

значительно меньше, чем в металлах. Поэтому уже при комнатной 

температуре электронный газ во многих полупроводниках является 

невырожденным и подчиняется законам классической статистики. 

Распределение электронов по уровням валентной зоны и зоны 

проводимости, описываемое функцией Ферми-Дирака, можно 

сделать очень наглядным, изобразив график этой функции 

совместно со схемой энергетических зон (рис. 4.9). 

Расчет показывает, что для собственных полупроводников 

значение уровня Ферми, отсчитанное от потолка валентной зоны, 

равно 

m

m
kTEE *

Э

*
Д

F ln
4

3

2

1
  , 

где  – ширина запрещенной зоны, а mД
* 

 и mЭ
*
 – соответственно 

эффективные массы дырки и электрона, находящегося в зоне 

проводимости. Обычно второе слагаемое пренебрежимо мало по 

сравнению с первым и можно полагать, что  

    Валентная зона

 Зона проводимости

Запрещенная зона


EEF

f (E)

E
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Рис. 4.10 

Рис. 4.9 

Это означает, что уровень Ферми лежит посредине 

запрещенной зоны, как показано на рис. 4.9. Следовательно, для 

электронов, перешедших в зону проводимости, величина E-EF мало 

отличается от половины ширины запрещенной зоны. Уровни зоны 

проводимости лежат на хвосте кривой распределения. Поэтому 

вероятность их заполнения электронами можно находить по 

формуле (4.12). Положив E - EF  ≈ E/2, получим 

kT

E

e)E(F 2const




 .   (4.13) 

Количество электронов, 

перешедших в зону 

проводимости, а, 

следовательно, и количество 

образовавшихся дырок, будет 

пропорционально вероятности 

(4.13). Эти электроны и дырки 

являются носителями тока. 

Поскольку проводимость 

пропорциональна числу 

носителей, она также должна быть пропорциональна выражению 

(4.13). Следовательно, электропроводность собственных 

полупроводников быстро увеличивается с ростом температуры по 

закону 

kT

E

e



 0
,                                      

(4.14) 

где  – ширина 

запрещенной зоны, а 0 – 

константа. 

Зависимость 

логарифма проводимости от 

обратной температуры будет 

иметь вид прямой, 

изображенной на рис. 4.10. 

Рис. 4.11 
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По наклону этой прямой можно определить ширину запрещенной 

зоны  
Типичными полупроводниками являются элементы IV группы 

периодической системы элементов – германий Ge и кремний Si. Они 

образуют решетку типа алмаза, в которой каждый атом связан 

ковалентными, т.е. парно-электронными связями с четырьмя 

соседними атомами, отстоящими от него на одинаковом расстоянии. 

Такое взаимное расположение атомов можно условно представить в 

виде плоской структуры, изображенной на рис. 4.11. 

Кружки со знаком "+" обозначают положительно заряженные 

атомные остатки (т.е. ту часть атома, которая остается после удаления 

валентных электронов),  кружки со знаком "-" – валентные электроны, а 

двойные черточки – ковалентные связи. 

При достаточно высокой температуре тепловое движение может 

разорвать отдельные пары, освободив один электрон. Покинутое 

электроном место перестает быть нейтральным, в его окрестности возникает 

избыточный положительный заряд +e – образуется дырка. На это место 

может перескочить электрон одной из соседних пар. В результате дырка 

начинает также странствовать по кристаллу, как и освободившийся 

электрон. 

Если вблизи дырки окажется свободный электрон, он может 

занять это место. Явление соединения свободного электрона и 

дырки называется рекомбинацией. Электрон и дырка 

рекомбинируют, т.е. электрон нейтрализует избыточный 

положительный заряд, имеющийся в окрестности дырки, и теряет 

свободу передвижения до тех пор, пока снова не получит энергию, 

достаточную для своего высвобождения. Рекомбинация сводится к 

одновременному исчезновению свободного электрона и дырки. На 

схеме уровней          (рис. 4.9) процессу рекомбинации соответствует 

переход электрона из зоны проводимости на один из свободных 

уровней валентной зоны. 

Итак, в собственном полупроводнике идут одновременно два 

процесса: рождение попарно свободных электронов и дырок и 

рекомбинация, приводящая к попарному исчезновению электронов 

и дырок. Вероятность первого процесса быстро растет с 

температурой. Вероятность рекомбинации пропорциональна как 

числу свободных электронов, так и числу дырок. Следовательно, 
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каждой температуре соответствует определенная равновесная 

концентрация электронов и дырок, которая изменяется с 

температурой пропорционально выражению (4.13). 

Когда внешнее электрическое поле отсутствует, электроны 

проводимости и дырки движутся хаотически. При включении поля 

на хаотическое движение накладывается упорядоченное движение: 

электронов против направления вектора напряженности поля и 

дырок – в направлении вектора напряженности. Оба движения – и 

дырок, и электронов – приводят к переносу заряда вдоль кристалла. 

Следовательно, собственная электропроводность обусловливается 

как бы носителями заряда двух знаков – отрицательными 

электронами и положительными дырками. 

В собственных полупроводниках концентрации электронов и 

дырок равны n=р=ni, а собственная концентрация ni зависит от 

материала и температуры. Проводимость полупроводника равна 

 = еni(un + uр),                                     (4.15) 

где e – элементарный заряд, а un и uр – так называемые 

подвижности электронов и дырок. Подвижность электронов 

численно равна средней скорости его направленного движения, 

приобретаемой под влиянием единичного электрического поля, т.е. 

un=v/E. Точно так же определяется и подвижность дырок. 

Подвижность принято измерять в м
2
/Вс, поскольку скорость 

измеряется в м/c, а напряженность электрического поля в В/м. 

Собственная проводимость наблюдается во всех без 

исключения полупроводниках при достаточно высокой температуре. 

Однако в полупроводниках, содержащих примеси, т.е. включения 

атомов других веществ в кристаллическую решетку, 

электропроводность складывается из собственной и примесной 

проводимости. 

 
ПРИМЕСНАЯ ПРОВОДИМОСТЬ 

ПОЛУПРОВОДНИКОВ 

 

Примесная проводимость 

возникает в том случае, если 

некоторые атомы данного 

полупроводника в узлах его 

Рис. 4.12 

Ge Ge

Ge Ge

P+
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кристаллической решетки заменить атомами другого вещества, 

валентность которого отличается на единицу от валентности 

основных атомов. На рис. 4.12 условно изображена решетка 

германия с примесью 5-валентных атомов фосфора. 

Для образования ковалентных связей с соседями атому 

фосфора достаточно четырех электронов. Следовательно, пятый 

валентный электрон оказывается слабо связанным с атомом и легко 

отделяется от него за счет энергии теплового движения. 

Отделившись от атома, он становится свободным электроном. 

Отличие от предыдущего случая заключается в том, что при этом не 

образуется дырки, поскольку ковалентные связи при этом не 

нарушаются. Несмотря на то, что в окрестности атома примеси 

возникает избыточный положительный заряд, этот заряд не может 

перемещаться по решетке, так как это заряд принадлежит атому, 

жестко фиксированному в данном узле решетки. 

Избыточный положительный заряд примеси может притянуть к 

себе свободный электрон, оказавшийся поблизости, но связь атома с 

захваченным таким образом электроном будет непрочной и легко 

нарушается вновь за счет тепловых колебаний решетки. 

Таким образом, в полупроводнике с примесью, валентность 

которой на единицу превышает валентность основных атомов, 

имеется только один вид носителей тока – электроны. 

Соответственно говорят, что такой полупроводник обладает 

электронной проводимостью или является полупроводником n-типа 

(от слова negative – отрицательный). 

Атомы примеси, поставляющие электроны проводимости, 

называются донорами. 

Рассмотрим теперь другой случай, когда валентность атома 

примеси на единицу меньше, чем валентность основных атомов. На 

рис. 4.13 условно изображена решетка кремния с примесью 

трехвалентных атомов бора. 
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Рис. 4.13 

Трех валентных электронов бора недостаточно для образования 

связей со всеми четырьмя соседними атомами. Поэтому одна из 

связей окажется неукомплектованной. На это место может перейти 

электрон с какой-либо соседней пары. При этом на том месте, которое 

покинул этот электрон, возникнет дырка, которая далее сможет 

перемещаться по кристаллу. Вблизи атома примеси возникнет 

избыточный отрицательный заряд, однако этот заряд не может стать 

носителем тока, поскольку он локализован вблизи данного атома и не 

способен перемещаться. 

Таким образом, в полупроводнике такого типа возникают 

носители только одного вида – дырки. Проводимость такого типа 

называется дырочной, а сам полупроводник принадлежит к p-типу 

(от слова positive – положительный). Примеси, вызывающие 

возникновение дырок, называются акцепторными. 

Экспериментально существование n- и p-проводимости 

подтверждается при исследовании эффекта Холла, описанного в 

первой части курса. 

Примеси искажают поле решетки, и в результате на 

энергетической схеме появляются дополнительные примесные 

уровни в запрещенной зоне кристалла. В полупроводниках n-типа 

такие примесные уровни называются донорными, а в 

полупроводниках p-типа они называются акцепторными. 

Уровень Ферми в полупроводниках n-типа располагается в 

верхней половине запрещенной зоны, а в полупроводниках p-типа – 

в нижней половине запрещенной зоны. При повышении 
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температуры уровень Ферми в полупроводниках обоих типов 

смещается к середине запрещенной зоны. 

Если донорные уровни расположены вблизи от потолка 

валентной зоны
4
, то они не могут существенно повлиять на 

электрические свойства кристалла. Иначе обстоит дело, когда 

расстояние таких уровней от дна зоны проводимости гораздо 

меньше, чем ширина запрещенной зоны. В этом случае энергия 

теплового движения даже при обычных температурах оказывается 

достаточной для того, чтобы перевести электрон с донорного уровня 

в зону проводимости (см. рис. 4.14, а), т.е. отделить пятый электрон 

от атома примеси. Захвату свободного электрона атомом примеси 

соответствует переход электрона из зоны проводимости обратно на 

один из донорных уровней. 

Акцепторные уровни оказывают существенное влияние на 

электрические свойства кристалла в том случае, если они 

расположены недалеко от потолка валентной зоны (рис.4.14, б). 

Образованию дырки соответствует переход электрона из валентной 

зоны на акцепторный уровень. Обратный переход соответствует 

разрыву одной из четырех ковалентных связей атома примеси с его 

соседями и рекомбинации образовавшихся при этом электрона и 

дырки. 

При повышении температуры концентрация примесных 

носителей тока быстро достигает насыщения. Это означает, что 

практически все донорные уровни освобождаются или практически 

все акцепторные уровни заполняются электронами. Вместе с тем по 

мере роста температуры все больше начинает сказываться 

собственная проводимость полупроводника, обусловленная 

переходом электронов непосредственно из валентной зоны в зону 

проводимости. 

 

 

                                                           
4
 Это значит, что пятый валентный электрон прочно связан со своим 

атомом. 
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Рис. 4.14 

Таким образом, при высоких температурах проводимость 

полупроводника складывается из примесной и собственной 

проводимостей. При низких температурах преобладает примесная, а 

при высоких - собственная проводимость. 

 

 

 
4.5. КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ 

 

При контакте двух различных полупроводников с различными 

типами проводимости между ними возникает разность потенциалов. 

Пусть имеются два полупроводника с различными 

структурами энергетических зон и с различным расположением 

уровней Ферми (химических потенциалов – ). 

При контакте этих полупроводников 

часть электронов из второго 

полупроводника перейдет в первый 

вследствие различия в величинах 

термодинамической работы выхода 

(W1>W2). В результате первый 

полупроводник заряжается отрицательно, 

а второй – положительно         (рис. 4.15) и 

между ними возникает контактная 

разность потенциалов 

Запрещенная зона 

Валентная 
зона 

Зона 
проводимости 

Акцепторные 
уровни 

Донорные 
уровни 

E F 

E F 

Рис. 4.15 
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WWe k 21 .                                    (4.16) 

В первом полупроводнике появляется избыток электронов, и 

он заряжается отрицательно, а во втором – недостаток электронов, и 

он, как бы, получает положительный заряд. При этом 

отрицательный и положительный объемные заряды образуются в 

приконтактной области. Это явление сопровождается 

выравниванием их уровней Ферми. 

Аналогичные процессы происходят в случае контакта металла 

и полупроводника n-типа. Если в контакте находятся металл и 

полупроводник n-типа, то в полупроводнике приконтактный слой 

обогащается, в основном, носителями (дырками), что приводит к 

возникновению запирающего слоя. 

Если между полупроводником и металлом приложить 

внешнее электрическое напряжение, то в результате образования 

запирающего слоя такой контакт приобретает выпрямляющие 

свойства, т.е. способность проводить электрический ток только в 

одном направлении. Это направление проводимости зависит от 

полярности приложенного напряжения. Принято говорить о прямом 

и обратном внешнем напряжении, о пропускном и запорном 

направлении тока. Прямым называют внешнее напряжение, при 

котором сопротивление контакта уменьшается, и контакт становится 

проводящим. При этом направление тока называют прямым. 

Напряжение первоначальной полярности, приводящее к 

возрастанию сопротивления контакта, называется обратным или 

запирающим, а направление тока в этом случае также называется 

обратным. При контакте металла с n-полупроводником прямое 

напряжение соответствует подаче на полупроводник минуса, а на 

металл - плюса источника внешнего напряжения. 

Если же в контакте находятся p-полупроводник и металл, то 

прямое напряжение соответствует подаче плюса напряжения 

источника на полупроводник и минуса – на металл. 

 

4.6. p-n - ПЕРЕХОД 
 

Аналогичный эффект образования p-n-перехода наблюдается 

и при контакте двух полупроводников с разными типами 
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проводимости, или при введении в полупроводник n-типа 

акцепторной примеси. Поскольку p-n-переход связан с образованием 

донорного слоя, обладающего выпрямляющими свойствами, то под 

электронно-дырочным переходом понимают контакт двух 

полупроводников с различными типами проводимостей. 

Вследствие различия в концентрации носителей тока на 

границе перехода возникает диффузионный поток. Если, например, 

условимся считать, что p-полупроводник находится слева, а n-

полупроводник – справа, то диффузионный поток электронов будет 

направлен справа налево, а дырок – слева направо. В результате, 

слева от границы появится объемный отрицательный заряд, а справа 

от границы – объемный положительный заряд. Это перемещение 

зарядов прекратится тогда, когда электрические силы возникающего 

задерживающего поля уравновесят силы диффузии. 

Вследствие диффузии левая и правая области оказываются 

обедненными основными носителями тока, поэтому область            

p-n-перехода является областью с повышенным электрическим 

сопротивлением, и все внешнее приложенное напряжение падает на         

p-n-переходе. 

При приложении внешнего напряжения U расположение 

уровня Ферми изменяется как в p-области, так и в n-области        

(рис. 4.16). 

При этом 

суммарное расхождение 

уровней Ферми равно eU, 

и высота потенциального 

барьера уменьшается на 

эту величину, т.е. 

становится равной 

или

V=Vk-eU.         (4.17) 

Как уже говорилось, 

такое внешнее 

напряжение, при котором уменьшается высота потенциального 

барьера на контакте, называется прямым. Следовательно, в случае p-

n-перехода прямое напряжение соответствует подаче минуса 

Рис. 4.16 

(p) (n)

-
+

x


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источника на n-область и плюса на p-область. Это правило остается 

в силе и для контакта металла с полупроводником. 

Если прямое напряжение считать положительным (U > 0), то 

обратное напряжение (минус на p-область и плюс на n-область) 

будет отрицательным (U < 0). В этом случае вместо (4.17) имеем 

V=Vk+eU,                                           (4.18) 

т.е. при обратном напряжении высота потенциального барьера 

повышается. 

Следует добавить, что p-n-переход используется в 

полупроводниковых диодах для преобразования переменного тока в 

постоянный. 

 

 

 

 

 

 

 

Глава 5. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ 

 
5.1. КВАРКОВАЯ ГИПОТЕЗА 

 

Элементарная частица – общее название частиц, которые 

невозможно разделить на составные части. 

Атом, со времен древнегреческих философов считавшийся 

неделимым (от древнегреческого ατομος — неделимый), в конце 

XIX века перестал в действительности считаться “неделимым”. 

Экспериментально было показано, и мы это уже видели, что 

атом состоит из ядра и электронной оболочки, а ядро, в свою 

очередь, состоит из нуклонов. Электроны и нуклоны стали считаться 

“неделимыми”. Однако более поздние исследования показали, что и 

они также состоят из более мелких частиц, которые на сегодняшний 

день считаются неделимыми, т.е. элементарными. 

В качестве примеров элементарных частиц можно назвать 

электрон (от древнегреческого  – янтарь), и фотон (от 

древнегреческого  – “свет”). Эти частицы и сегодня считаются 
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элементарными бесструктурными и рассматриваются как 

первичные фундаментальные частицы. Другие элементарные 

частицы (так называемые составные частицы — протон, нейтрон и 

т.д.) по современным представлениям имеют сложную внутреннюю 

структуру, но, тем не менее, разделить их на части невозможно. В 

этом состоит принцип так называемого “конфайнмента” (от 

английского слова confinement – удержание), согласно которому 

невозможно разделить их на более мелкие частицы, способные 

существовать в свободном состоянии. Эти более мелкие частицы, 

существующие на сегодняшний день только в теории, получили 

название кварков. В экспериментах наблюдаются только агрегаты 

кварков, состоящие из двух (мезоны) или трёх (барионы) кварков. 

Тем не менее имеются достаточно веские основания считать, что 

сами кварки существуют: кварки хорошо описывают систематику 

элементарных частиц и наблюдаются внутри них. 

Строение и поведение элементарных частиц изучается 

физикой элементарных частиц. 

Таким образом, вновь открытая (точнее теоретически открытая) 

частица – кварк также относится к числу элементарных 

бесструктурных частиц наряду с электроном и фотоном. 

Установлено, что кварк обладает электрическим зарядом, кратным 

e/3, и не наблюдается в свободном состоянии. Кварки являются 

весьма малыми частицами, размеры которых имеют порядок 0,5×10
−19

 

м, что примерно в 20 тысяч раз меньше размера протона. Другие 

элементарные частицы имеют сложную внутреннюю структуру, т.е. 

являются составными. Составные частицы получили общее название 

адроны. К ним относятся, в частности, протоны и нейтроны. Адроны 

состоят из кварков. Таким образом, протон и нейтрон являются 

составными фундаментальными частицами. 

В настоящее время известно 6 разных «сортов» (чаще говорят 

– “ароматов”) кварков, свойства которых приведены в таблице. 

Кроме того, предполагается, что кварки обладают и дополнительной 

внутренней характеристикой, называемой “цвет”. Каждому кварку 

соответствует антикварк с противоположными квантовыми 

числами. 

http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%82%D0%BE%D0%BD
http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD
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Гипотеза о том, что адроны состоят из кварков, была впервые 

выдвинута М. Гелл-Манном
5
 и, независимо от него, Дж. Цвейгом

6
 в 

1964 году. 

Слово «кварк» было заимствовано Гелл-Манном из романа Дж. 

Джойса “Поминки по Финнегану” (“Finnegan’s Wake”), где в одном из 

эпизодов звучит фраза “Three quarks for Muster Mark!”. Здесь слово 

“quark” является звукоподражанием крику чаек. Согласно другой 

версии Джойс взял это слово из немецкого языка, где quark означает 

“чепуха”. 

Дж. Цвейг называл эти частицы тузами, но данное название не 

прижилось, возможно, потому, что тузов четыре, а кварков в 

первоначальной модели было три. 

 

 

 

Таблица 5.1 

Символ 
Название 

Заряд Масса 
русский английский 

Первое поколение 

d нижний down −1/3 ~ 5 МэВ/c² 

u верхний up +2/3 ~ 3 МэВ/c² 

Второе поколение 

s странный strange −1/3 95 ± 25 МэВ/c² 

c очарованный charm (charmed) +2/3 1,8 ГэВ/c² 

Третье поколение 

b прелестный beauty (bottom) −1/3 4,5 ГэВ/c² 

t истинный truth (top) +2/3 171 ГэВ/c² 

 

Принято группировать кварки в три так называемые поколения 

(они так и представлены в табл.5.1). В каждом поколении один 

кварк обладает зарядом +
2
/3, а другой – −

1
/3. Подразделение на 

поколения распространяется также и на лептоны. Поколение — это 

часть классификации элементарных частиц, относящаяся к 
                                                           
5
 Мюррей Гелл-Манн (Гельман; англ. Murray Gell-Mann; род. 1929,  США) – 

американский физик, лауреат Нобелевской премии по физике в 1969 г. «за 

открытия, связанные с классификацией элементарных частиц и их 

взаимодействий». 
6
 Джордж Цвейг (англ. George Zweig; род. 30 мая 1937, Москва, СССР) – 

американский физик и нейробиолог. 

http://ru.wikipedia.org/wiki/%D0%9C%D1%8D%D0%92
http://ru.wikipedia.org/wiki/%D0%93%D1%8D%D0%92
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фундаментальным частицам (кваркам и лептонам). Частицы разных 

поколений отличаются только массой и ароматом; все 

фундаментальные взаимодействия и квантовые числа идентичны. 

Согласно Стандартной Модели, существует всего три поколения. 

Каждый член следующего поколения имеет массу большую, 

чем соответствующая частица предыдущего (для нейтрино это 

остаётся лишь предположением, обратная иерархия масс не 

исключена экспериментально). Например, заряженный лептон 

первого поколения (электрон) имеет массу всего 0,511 МэВ, мюон 

(второе поколение) имеет массу 106 МэВ, а тау-лептон (третье 

поколение) имеет массу 1777 МэВ (почти в два раза тяжелее 

протона). 

Все обычные атомы содержат частицы первого поколения. 

Электроны окружают атомное ядро, состоящее из протонов и 

нейтронов, которые содержат u- и d-кварки. Второе и третье 

поколения заряженных частиц не присутствуют в обычной материи и 

наблюдаются только в условиях очень высоких энергий. Нейтрино 

всех поколений пронизывают вселенную, но редко взаимодействуют 

с обычной материей. 

Возможность существования четвёртого (пятого и т.д.) 

поколений в некоторой степени исключена экспериментом. Кроме 

того, три поколения лёгких нейтрино согласуются с наблюдаемой 

космологической распространённостью гелия. 

Кварки участвуют в сильных, слабых и электромагнитных 

взаимодействиях. Сильные взаимодействия (обмен глюоном) могут 

изменять цвет кварка, но не меняют его аромат. Слабые 

взаимодействия, наоборот, не меняют цвет, но могут менять аромат. 

Необычные свойства сильного взаимодействия приводят к тому, что 

одиночный кварк не может удалиться на какое-либо заметное 

расстояние от других кварков, а значит, кварки не могут 

наблюдаться в свободном виде (явление конфайнмента). 

Разлететься могут лишь «бесцветные» комбинации кварков – 

адроны. 

На рис. 5.1 

продемонстрирована кварковая 

структура протона (a) и нейтрона 

(б). Протон состоит из двух 

Рис. 5.1 
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верхних и одного нижнего кварка. Сильная связь осуществляется 

глюонами (волнистые линии). Нейтрон состоит из двух нижних 

кварков и одного верхнего. 

Выше мы видели, что электрон обладает полуцелым спином. 

Также полуцелым спином обладают протон, нейтрон и нейтрино. Но 

имеются частицы, обладающие целым спином. К ним относится, в 

первую очередь фотон, а также глюон и мезоны. 

 
5.2. КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ 

 

Из всего изложенного выше следует, что элементарные 

частицы можно классифицировать следующим образом. 

По величине спина все элементарные частицы делятся на два класса: 

- бозоны – частицы с целым спином (фотон, глюон, мезоны); 

- фермионы – частицы с полуцелым спином (электрон, протон, 

нейтрон, нейтрино). 

По видам взаимодействий элементарные частицы делятся на 

две большие группы. 

Первая группа - составные частицы: 

- адроны – частицы, участвующие во всех видах 

фундаментальных взаимодействий
7
, они состоят из кварков и 

подразделяются, в свою очередь; 

- на мезоны – адроны с целым спином, то есть являющиеся 

бозонами; 

- барионы – адроны с полуцелым спином, то есть фермионы, к 

ним, в частности, относятся частицы, составляющие ядро атома – 

протон и нейтрон. 

Вторая группа -фундаментальные (бесструктурные) 

частицы: 

                                                           
7
 Фундаментальные взаимодействия — качественно различающиеся типы 

взаимодействия элементарных частиц и составленных из них тел. 

Достоверно известно существование четырех фундаментальных 

взаимодействий: гравитационного, электромагнитного, сильного, слабого. 

При этом электромагнитное и слабое взаимодействия являются 

проявлениями единого электрослабого взаимодействия. 

 

http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%B7%D0%BE%D0%BD%D1%8B
http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%B7%D0%BE%D0%BD_(%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0)
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- лептоны (от греческого λεπτός – лёгкий) – фермионы, 

которые имеют вид точечных частиц (т.е. частиц, имеющих 

чрезвычайно малые размеры, вплоть до масштабов порядка 10
−18

 м). 

Все лептоны являются фермионами, то есть их спин равен ½. 

Лептоны не участвуют в сильных взаимодействиях. В 

электромагнитных взаимодействиях участвуют только заряженные 

лептоноы (электроны, мюоны, тау-лептоны). Нейтрино не 

участвуют в электромагнитных взаимодействиях. Известно 6 типов 

лептонов. Название лептон было предложено в 1948 году, 

поскольку все известные в то время такого рода частицы были 

значительно легче тяжёлых частиц, входящих в класс барионов 

(греч. βαρύς – тяжёлый). Это, правда, не совсем так, поскольку 

открытый позже году -лептон примерно в два раза тяжелее самых 

лёгких барионов (протона и нейтрона); 

- кварки, заряд которых не является кратным заряду электрона,  

а дробным по отношению к нему. Кварки входят в состав адронов и 

в свободном состоянии не обнаружены. Как и лептоны, кварки 

делятся на 6 типов и считаются бесструктурными, однако, в отличие 

от лептонов, участвуют в сильном взаимодействии; 

- калибровочные бозоны – частицы, посредством обмена 

которыми осуществляются взаимодействия следующих частиц: 

- фотоны – частицы, осуществляющие электромагнитное 

взаимодействие; 

- восемь глюонов – частиц, осуществляющих сильное (ядерное) 

взаимодействие; 

- три промежуточных векторных бозона W
+
, W

−
 и Z

0
, 

осуществляющие слабое взаимодействие. W-частица названа по 

первой букве названия взаимодействия – слабое (Weak) 

взаимодействие. Z-частица получила такое имя, поскольку Z-бозон 

имеет нулевой (Zero) электрический заряд. Существует два типа W-

бозонов – с электрическим зарядом +1 и −1 (в единицах 

элементарного заряда); W
+
 является античастицей для W

−
. Z-бозон 

(или Z
0
) электрически нейтрален и является античастицей сам для 

себя. Все три частицы имеют весьма малое время жизни, около 

3×10
−25

 секунд; 

- гравитон – гипотетическая частица, осуществляющая 

гравитационное взаимодействие. Гравитон не имеет 
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электрического заряда, его спин равен 2, он обладает двумя 

возможными направлениями поляризации. Термин гравитон был 

предложен в 1930-х годах советскими учеными Д.И.Блохинцевым и 

Ф.М.Гальпериным
8
. Существование гравитонов пока не доказано 

экспериментально в связи со слабостью гравитационного 

взаимодействия, но считается вполне вероятным. Гравитон не 

входит в Стандартную модель элементарных частиц. 

 Адроны и лептоны образуют вещество (т.е. материю, форма 

которой, в отличие от поля, обладает массой покоя). Калибровочные 

бозоны – это кванты разных типов взаимодействий. 

Кроме того, в Стандартной модели элементарных частиц 

присутствует так называемый бозон Хиггса. Однако эта 

элементарная частица пока ещё не обнаружена экспериментально. 

Таким образом, на сегодняшний день самыми элементарными, 

точечными частями вещества считаются кварки и лептоны. Эти 

частицы вместе с калибровочными бозонами называются 

фундаментальными частицами. 

В настоящее время делаются попытки построить теории, в 

которых лептоны и кварки также являются составными объектами. 

Однако до сих пор никаких экспериментальных указаний на 

составную структуру лептонов не обнаружено, хотя наличие 

некоторые признаки (наличие трёх поколений фермионов, трёх 

цветов кварков, симметрия между кварками и лептонами) 

указывают на то, что они могут быть составными частицами.  

Принято рабочее название для гипотетических частиц, 

составляющих кварки и лептоны, – преоны. 

 

Таблица 5.2 
Символ Название Заряд Масса 

Первое поколение 

e− Электрон −1 0,510998910(13) МэВ/c² 

νe Электронное нейтрино 0 < 2 эВ/c² 

Второе поколение 

                                                           
8
 Дмитрий Иванович Блохинцев (1907, Москва – 1979, Дубна) – советский 

физик, член-корреспондент АН СССР (1958) и АН УССР (1939), Фёдор 

(Файвель) Матвеевич Гальперин (1903–1985), советский металлофизик. 

Лауреат Сталинской премии (1943). 

http://ru.wikipedia.org/wiki/%D0%9C%D1%8D%D0%92
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μ− Мюон −1 105,6583668(38) МэВ/c² 

νμ Мюонное нейтрино 0 < 0,19 МэВ/c² 

Третье поколение 

τ− -лептон −1 1776,84(17) МэВ/c² 

ντ -нейтрино 0 < 18,2 МэВ/c² 

 

Таким образом, в каждое поколение входит отрицательно 

заряженный (с зарядом −1e) лептон, положительно заряженный (с 

зарядом +1e) антилептон и нейтральные нейтрино и антинейтрино. 

Все они обладают ненулевой массой, хотя масса нейтрино весьма 

мала по сравнению с массами других элементарных частиц (менее 1 

эВ для электронного нейтрино). 

Каждому заряженному лептону (электрон, мюон, -лептон) 

соответствует лёгкий нейтральный лептон – нейтрино. Ранее 

считалось, что каждое поколение лептонов обладает своим (так 

называемым флейворным – от англ. flavour – аромат) лептонным 

зарядом, – иными словами, лептон может возникнуть только вместе 

с антилептоном из своего поколения, так, чтобы разность количества 

лептонов и антилептонов каждого поколения в замкнутой системе 

была постоянной. Эта разность называется электронным, мюонным 

или -лептонным числом, в зависимости от рассматриваемого 

поколения. Лептонное число лептона равно +1, антилептона – −1. 

Из заряженных лептонов стабильным является только самый 

лёгкий из них – электрон (и его античастица – позитрон). Более 

тяжёлые заряженные лептоны распадаются на более лёгкие. 

Например, отрицательный мюон распадается в электрон, 

электронное антинейтрино и мюонное нейтрино с временем жизни 

около 2 микросекунд. -лептон (время жизни около 3×10
−13

 с) может 

распадаться с вылетом не только лептонов, но и лёгких адронов 

(каонов и пионов). 

Каон (или K-мезон, обозначается K) – мезон, содержащий 

один странный антикварк и один u- или d-кварк (антикаоны, 

напротив, содержат один странный кварк и один u- или d-

антикварк). Каоны – самые лёгкие из всех странных (то есть 

имеющих ненулевую странность) адронов. Распад нейтрино не 

обнаружен, в настоящее время они считаются стабильными. 

http://ru.wikipedia.org/wiki/%D0%9C%D1%8D%D0%92
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Пион, пи-мезон (греч.  – буква пи и  – средний) – три 

вида субатомных частиц из группы мезонов. Обозначаются π
0
, π

+
 и 

π
−
. Пионы имеют наименьшую массу среди мезонов. Пионы имеют 

нулевой спин и состоят из пары кварк-антикварк первого 

поколения. Согласно кварковой модели u- и анти-d-кварки 

формируют π
+
-мезон, из d и анти-u-кварков состоит его античастица, 

π
−
-мезон. Электрически-нейтральные комбинации u и анти-u и d и 

анти-d могут существовать только в виде суперпозиции, так как они 

имеют одинаковый набор квантовых чисел. 

Адроны (от др.-греч. δρός «крупный», «массивный»; термин 

предложен советским физиком Л.Б.Окунем
9
 в 1962 году) – класс 

элементарных частиц, подверженных сильному взаимодействию. 

Адроны обладают сохраняющимися в процессах сильного 

взаимодействия квантовыми числами (странностью, очарованием, 

красотой и др.) 

Адроны делятся на две основные группы в соответствии с их 

кварковым составом: 

- мезоны – состоят из одного кварка и одного антикварка, 

- барионы – состоят из трёх кварков трёх цветов, образуя 

бесцветную комбинацию. 

Именно из барионов построена подавляющая часть 

наблюдаемого нами вещества – это нуклоны, составляющие ядро 

атома и представленные протоном и нейтроном. К барионам 

относятся также многочисленные гипероны – более тяжёлые и 

нестабильные частицы, получаемые на ускорителях элементарных 

частиц. 

Физика элементарных частиц в настоящее время развивается 

весьма интенсивно, появляется огромное количество новых 

экспериментальных данных и теоретических исследований, поэтому 

представления о некоторых частица меняются в соответствии с 

новыми результатами. Так, например, первоначально термин мезон 

имел смысл “средний по массе”, поэтому в разряд мезонов попали и 

                                                           
9
 Лев Борисович Окунь (род. 1929) – российский учёный-физик, специалист 

по теории элементарных частиц (теория слабых взаимодействий, составные 

модели элементарных частиц и др.). Действительный член РАН, доктор 

физико-математических наук, профессор Института теоретической и 

экспериментальной физики. 

http://ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BA%D0%BE%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D1%8B%D1%85_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86
http://ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BA%D0%BE%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D1%8B%D1%85_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86
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открытые в конце 1930-х мюоны, которые назывались μ-мезонами. 

Однако затем было установлено, что мюон не обладает сильным 

взаимодействием, а относится, как и электрон, к классу лептонов, 

поэтому название μ-мезон в настоящее время считается 

неправильным. 

Недавно были обнаружены так называемые экзотические 

адроны, которые также являются сильновзаимодействующими 

частицами, но которые не укладываются в рамки кварк-

антикварковой или трёхкварковой классификации адронов. 

Некоторые адроны пока только подозреваются в экзотичности. 

Экзотические адроны делятся: 

- на экзотические барионы, в частности пентакварки, 

минимальный кварковый состав которых – 4 кварка и 1 антикварк. 

Несколько экспериментов 2003 года подтверждают, что обнаружен 

пентакварк с массой приблизительно 1540 МэВ/c², который состоит 

из двух “верхних”, двух “нижних” кварков и одного “странного” 

антикварка (uudds). Существование пентакварка было теоретически 

предсказано учеными Петербургского института ядерной физики в 

1997 году. Экспериментально существование пентакварка было 

подтверждено в июле 2003 года Такаси Накано (Осакский 

Университет, Япония) и американским ученым Кеном Хиксом. В 

этих экспериментах высокоэнергетичные гамма-кванты 

взаимодействовали с  

http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%82%D0%B5%D1%80%D0%B1%D1%83%D1%80%D0%B3%D1%81%D0%BA%D0%B8%D0%B9_%D0%B8%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82_%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D0%BE%D0%B9_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8
http://ru.wikipedia.org/wiki/1997_%D0%B3%D0%BE%D0%B4
http://ru.wikipedia.org/wiki/2003_%D0%B3%D0%BE%D0%B4
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Рис. 5.2 

нейтроном, создавая мезон и пентакварк. Однако пентакварк 

существует в течение 10
−20

 секунд перед распадом на мезон и 

нейтрон. В конечном итоге в большинстве экспериментов на вопрос 

о существовании пентакварка был получен отрицательный ответ, 

опровергающий ранее полученные положительные результаты. Тем 

не менее, эксперименты по поиску пентакварков продолжаются. 

Существуют также некварковые модели мезонов, которые 

включают: 

- экзотические мезоны, которые имеют набор квантовых 

чисел, невозможный в рамках кварковой модели; 

- глюболы или глюоний вообще не содержат отдельных 

кварков; 

- тетракварки содержат две отдельные кварк-антикварковые 

пары; 

http://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D1%80%D0%BA
http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B7%D0%BE%D0%BD
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- гибридные мезоны содержат кварк-антикварковую пару и 

один или больше глюонов. 

Глюоны (англ. gluon от glue – клей) – элементарные частицы, 

являющиеся причиной взаимодействия кварков, а также косвенно 

ответственные за соединение протонов и нейтронов в атомном ядре. 

Глюон не имеет массы. Как и фотон, он обладает единичным 

спином и является античастицей самому себе. 

Стандартная кварковая модель, предложенная Гелл-Манном, 

представлена на рис.5.2. 
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http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0
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ГЛОССАРИЙ 

 

Адиабатический процесс – термодинамический процесс в 

макроскопической системе, при котором система не получает и не 

отдаёт тепловой энергии. 

Адроны (от др.- греч. δρός – «крупный», «массивный») – 

класс элементарных частиц, подверженных сильному 

взаимодействию. Адроны обладают сохраняющимися в процессах 

сильного взаимодействия квантовыми числами (странностью, 

очарованием, красотой и др.). 

Акцептор (лат. accipio – «принимать, получать») – это объект, 

получающий (принимающий) что-либо от другого объекта, 

называемого донором. 

Альфа-распад – вид радиоактивного распада ядра, в 

результате которого происходит испускание альфа-частицы. При 

этом массовое число уменьшается на 4, а атомный номер – на 2. 

Альфа-частица (α-частица) –  положительно заряженная 

частица, образованная 2 протонами и 2 нейтронами. Идентична ядру 

атома гелия-4. 

Аннигиляция (лат. Annihilatio – уничтожение) – в физике 

реакция превращения частицы и античастицы при их столкновении 

в какие-либо иные частицы, отличные от исходных. 

Антивещество – материя, состоящая из античастиц. По 

современным представлениям, силы, определяющие структуры 

материи (сильное взаимодействие, образующее ядра, и 

электромагнитное взаимодействие, образующее атомы и молекулы) 

совершенно одинаковы как для частиц, так и для античастиц. Это 

означает, что структура антивещества должна быть идентична 

структуре обычного вещества. 

Античастица – частица-двойник некоторой другой 

элементарной частицы, обладающая той же массой и тем же спином, 

но отличающаяся от неё знаками некоторых характеристик 

взаимодействия (электрического и цветового зарядов, барионного и 

лептонного квантовых чисел). 

Аромат (англ. flavour) – общее название для ряда квантовых 

чисел, характеризующих тип кварка или лептона. 

http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%8A%D0%B5%D0%BA%D1%82
http://ru.wikipedia.org/wiki/%D0%94%D0%BE%D0%BD%D0%BE%D1%80
http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
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Атом (от др.- греч. τομος – неделимый) – наименьшая 

химически неделимая часть химического элемента, являющаяся 

носителем его свойств. 

Барионы (от греч. βαρύς – тяжёлый) – семейство 

элементарных частиц, сильно взаимодействующие фермионы, 

состоящие из трёх кварков. 

Бета-распад – тип радиоактивного распада, обусловленного 

слабым взаимодействием и изменяющего заряд ядра на единицу.  

Бета-частица – электрон или позитрон. 

Вечный двигатель второго рода – машина, которая, будучи 

пущена в ход, превращала бы в работу всё тепло, извлекаемое из 

окружающих тел. Невозможность осуществления вечного двигателя 

второго рода постулируется в термодинамике в качестве одной из 

эквивалентных формулировок второго начала термодинамики. 

Вечный двигатель первого рода – устройство, способное 

бесконечно совершать работу без затрат топлива или других 

энергетических ресурсов. Невозможность осуществления вечного 

двигателя первого рода постулируется в термодинамике как первое 

начало термодинамики. 

Виртуальная частица – некоторый абстрактный объект в 

квантовой теории поля, обладающий квантовыми числами одной из 

реальных элементарных частиц (с массой m), для которого, однако, 

не выполняется обычная связь между энергией и импульсом. 

Волна – изменение состояния среды или физического поля 

(возмущение), распространяющееся либо колеблющееся в 

пространстве и времени или в фазовом пространстве. 

Гамма-излучение (гамма-лучи, γ-лучи) – вид 

электромагнитного излучения с чрезвычайно малой длиной волны – 

< 5×10
−3

 нм и, вследствие этого, ярко выраженными 

корпускулярными и слабо выраженными волновыми свойствами. 

Глюоны (англ. gluon от glue – клей) – элементарные частицы, 

являющиеся причиной взаимодействия кварков, а также косвенно 

ответственные за соединение протонов и нейтронов в атомном ядре. 

Гравитационное взаимодействие, гравитация (притяжение, 

всемирное тяготение, тяготение) (от лат. gravitas – «тяжесть») – 

универсальное фундаментальное взаимодействие между всеми 

материальными телами. В приближении малых скоростей и слабого 

http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
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гравитационного взаимодействия описывается теорией тяготения 

Ньютона, в общем случае описывается общей теорией 

относительности Эйнштейна. Гравитация является самым слабым из 

четырех типов фундаментальных взаимодействий. 

Диэлектрик (изолятор) – вещество, плохо проводящее или 

совсем не проводящее электрический ток. Концентрация свободных 

носителей заряда в диэлектрике не превышает 10
8
 см

−3
. Основное 

свойство диэлектрика состоит в способности поляризоваться во 

внешнем электрическом поле. С точки зрения зонной теории 

твёрдого тела диэлектрик – вещество с шириной запрещённой зоны 

больше 3 эВ. 

Дырка – квазичастица, носитель положительного заряда, 

равного элементарному заряду в полупроводниках. 

Жидкость – одно из агрегатных состояний вещества. 

Основным свойством жидкости, отличающим её от других 

агрегатных состояний, является способность неограниченно менять 

форму под действием касательных механических напряжений, даже 

сколь угодно малых, практически сохраняя при этом объём. Жидкое 

состояние обычно считают промежуточным между твёрдым телом и 

газом: газ не сохраняет ни объём, ни форму, а твёрдое тело 

сохраняет и то, и другое. 

Запрещённая зона – область значений энергии, которыми не 

может обладать электрон в идеальном (бездефектном) кристалле. 

Излучение – процесс испускания и распространения энергии 

в виде волн и частиц. 

Изобарический (изобарный) процесс (др.- греч. ίσος, isos – 

«одинаковый» + άαρος, baros – «вес») – термодинамический процесс, 

происходящий в системе при постоянном давлении и массе идеального 

газа. 

Изотопы (от греч. ισος – «равный», «одинаковый», и τόπος – 

«место») – разновидности атомов (и ядер) одного химического 

элемента с разным количеством нейтронов в ядре. 

Изохорический или изохорный процесс (от др.- греч. ίσος – 

«равный», и χώρος – «пространство, занятое место») – это 

термодинамический процесс, который происходит при постоянном 

объёме. 

http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
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Калибровочные бозоны – это бозоны, которые действуют как 

переносчики фундаментальных взаимодействий природы. 

Квазичастица – квант коллективного колебания или 

возмущения многочастичной системы, обладающий определённой 

энергией и, как правило, импульсом (например, фонон). 

Квантовое число в квантовой механике – численное значение 

какой-либо квантованной переменной микроскопического объекта 

(элементарной частицы, ядра, атома и т.д.), характеризующее 

состояние частицы. Задание квантовых чисел полностью 

характеризует состояние частицы. 

Кварк – фундаментальная частица в Стандартной модели, 

обладающая электрическим зарядом, кратным e/3, и не 

наблюдающаяся в свободном состоянии. 

Конфайнмент (от англ. confinement – удержание [цвета]) – 

явление в физике элементарных частиц, состоящее в невозможности 

получения кварков в свободном состоянии, поскольку в 

экспериментах наблюдаются только агрегаты кварков, состоящие из 

двух (мезоны) или трёх (барионы) кварков. 

Кристаллическая решётка – вспомогательный 

геометрический образ, вводимый для анализа строения кристалла. 

Решётка имеет сходство с канвой или сеткой, что даёт основание 

называть точки решётки узлами. Решёткой является совокупность 

точек (атомов), которые возникают из отдельной произвольно 

выбранной точки кристалла под действием группы трансляции. 

Кристаллы (от греч. κρύσταλλος, первоначально – лёд, в 

дальнейшем – горный хрусталь, кристалл) – твёрдые тела, в которых 

атомы расположены закономерно, образуя трёхмерно-

периодическую пространственную укладку – кристаллическую 

решётку. 

Лептоны (греч. λεπτός – лёгкий) – фундаментальные частицы 

с полуцелым спином, не участвующие в сильном взаимодействии. 

Наряду с кварками и калибровочными бозонами, лептоны 

составляют неотъемлемую часть Стандартной модели. 

Масса (от греч. μάζα) – одна из важнейших физических 

величин. Первоначально (XVII-XIX века) она характеризовала 

«количество вещества» в физическом объекте, от которого, по 

представлениям того времени, зависели как способность объекта 

http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0
http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0
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сопротивляться приложенной силе (инертность), так и 

гравитационные свойства – вес. Тесно связана с понятиями 

«энергия» и «импульс». По современным представлениям масса 

эквивалентна энергии покоя. 

Масса эффективная частицы – динамическая масса, которая 

появляется при движении частицы в периодическом потенциале 

кристалла. Электроны и дырки в кристалле реагируют на 

электрическое поле так, как если бы они свободно двигались в 

вакууме, но с некой эффективной массой, которую обычно 

определяют в единицах массы покоя электрона me (9.11×10
−31

 кг). Она 

отлична от массы покоя электрона. 

Массовое число атомного ядра – суммарное количество 

протонов и нейтронов (называемых общим термином «нуклоны») в 

ядре. Обычно обозначается буквой A. 

Материя (от лат. mаteria – «вещество») – фундаментальное 

физическое понятие, связанное с любыми объектами, 

существующими в природе, о которых можно судить благодаря 

ощущениям. 

Мезон (от др.- греч. μέσος – средний) – это сильно 

взаимодействующий бозон. 

Насыщенный пар – пар, находящийся в термодинамическом 

равновесии с жидкостью или твёрдым телом того же состава. 

Нейтрино – нейтральная фундаментальная частица с 

полуцелым спином, участвующая только в слабом и 

гравитационном взаимодействиях, и относящаяся к классу лептонов. 

Нейтрон (от лат. neuter – ни тот, ни другой) – элементарная 

частица, не имеющая электрического заряда. Нейтрон является 

фермионом и принадлежит к классу барионов. 

Нейтроны быстрые – свободные нейтроны, кинетическая 

энергия которых больше некоторой величины, конкретное значение 

которой зависит от контекста, в котором используется термин. В 

физике ядерных реакторов быстрыми обычно называют нейтроны с 

энергиями больше 0,1 МэВ.  

Нейтроны тепловые (медленные) – свободные нейтроны, 

кинетическая энергия которых близка к средней энергии теплового 

движения молекул газа при комнатной температуре (примерно 0,025 

эВ). 

http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B8
http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F
http://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%81
http://ru.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F
http://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%BC%D0%B0%D1%81%D1%81%D1%8B_%D0%B8_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8
http://ru.wikipedia.org/wiki/%D0%A7%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0_%D0%B2_%D0%BF%D0%B5%D1%80%D0%B8%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%BC_%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B5
http://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB
http://ru.wikipedia.org/wiki/%D0%94%D1%8B%D1%80%D0%BA%D0%B0_(%D0%BA%D0%B2%D0%B0%D0%B7%D0%B8%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0)
http://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5
http://ru.wikipedia.org/wiki/%D0%92%D0%B0%D0%BA%D1%83%D1%83%D0%BC
http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%81%D1%81%D0%B0_%D0%BF%D0%BE%D0%BA%D0%BE%D1%8F
http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D0%BB%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC
http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%81%D1%81%D0%B0_%D0%BF%D0%BE%D0%BA%D0%BE%D1%8F
http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0
http://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0
http://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D0%BD
http://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D0%B0%D0%B1%D0%BE%D0%B5_%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5
http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE%D0%B5_%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5
http://ru.wikipedia.org/wiki/%D0%9B%D0%B5%D0%BF%D1%82%D0%BE%D0%BD%D1%8B
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Нуклоны (от лат. nucleus – ядро) – общее название для 

протонов и нейтронов. 

Пар – газообразное состояние вещества в условиях, когда 

газовая фаза может находиться в равновесии с жидкой или твёрдой 

фазами того же вещества. Процесс возникновения пара из жидкой 

(твёрдой) фазы называется «парообразованием». Обратный процесс 

называется конденсация. 

Позитрон (от англ. Positive – положительный) – античастица 

электрона. Относится к антивеществу, имеет электрический заряд 

+1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. 

При аннигиляции позитрона с электроном их масса превращается в 

энергию в форме двух (и гораздо реже – трёх и более) гамма-

квантов. 

Политропический процесс – термодинамический процесс, во 

время которого удельная теплоёмкость c газа остаётся неизменной. 

Полупроводники – материалы, которые по своей удельной 

проводимости занимают промежуточное место между 

проводниками и диэлектриками и отличаются от проводников 

сильной зависимостью удельной проводимости от концентрации 

примесей, температуры и различных видов излучения. 

Потенциальная яма – область пространства, где 

присутствует локальный минимум потенциальной энергии частицы. 

Проводники – это тела, в которых имеются свободные 

носители заряда, то есть заряженные частицы, которые могут 

свободно перемещаться внутри этих тел. 

Протон (от др.-греч. πρωτος – первый, основной) – 

элементарная частица. Относится к барионам, имеет спин 1/2, 

электрический заряд +1 (в единицах элементарного электрического 

заряда). 

Рабочее тело – в теплотехнике и термодинамике условное 

несменяемое материальное тело, расширяющееся при подводе к 

нему теплоты и сжимающееся при охлаждении и выполняющее 

работу по перемещению рабочего органа тепловой машины. В 

теоретических разработках рабочее тело обычно обладает 

свойствами идеального газа. 

Радиоактивный распад (от лат. radius – «луч» и аctivus – 

«действенный») – спонтанное изменение состава нестабильных 

http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
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атомных ядер (заряда Z, массового числа A) путём испускания 

элементарных частиц или ядерных фрагментов. 

Рекомбинация – процесс «гибели» электрон-дырочной пары в 

полупроводнике. 

Сильное ядерное взаимодействие (цветовое взаимодействие, 

я дерное взаимодействие) – одно из четырёх фундаментальных 

взаимодействий в физике. Сильное взаимодействие действует в 

масштабах атомных ядер и меньше, отвечая за притяжение между 

нуклонами в ядрах и между кварками в адронах. 

Система (от др.- греч. σύστημα – целое, составленное из частей; 

соединение) – множество элементов, находящихся в отношениях и 

связях друг с другом, которое образует определённую целостность, 

единство. 

Слабое взаимодействие, или слабое ядерное взаимодействие 

– одно из четырёх фундаментальных взаимодействий в природе. 

Оно ответственно, в частности, за бета-распад ядра. 

Спектр (лат. spectrum от лат. specter – виде ние, призрак) – 

распределение энергии, частоты или массы. Графическое 

представление такого распределения называется спектральной 

диаграммой. Обычно под спектром подразумевается 

электромагнитный спектр – спектр частот электромагнитного 

излучения. В научный обиход термин спектр ввёл Ньютон для 

обозначения многоцветной полосы, похожей на радугу, которая 

получается при прохождении солнечного луча через треугольную 

стеклянную призму. 

Спин (от англ. spin – вертеть) – собственный момент импульса 

элементарных частиц, имеющий квантовую природу и не связанный 

с перемещением частицы как целого. Спином называют также 

собственный момент импульса атомного ядра или атома. 

Стандартная модель – теоретическая конструкция в физике 

элементарных частиц, описывающая электромагнитное, слабое и 

сильное взаимодействие всех элементарных частиц. Стандартная 

модель не включает в себя гравитацию. 

Статистическая физика – это раздел теоретической физики, 

посвященный изучению систем с произвольным (часто — 

бесконечным или несчетным) числом степеней свободы. Изучаемые 

системы могут быть как классическими, так и квантовыми. 

http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
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Степень свободы молекул – количество координат для 

определения расположения молекулы в пространстве. 

Cтранность – в физике элементарных частиц – квантовое 

число, необходимое для описания определённых короткоживущих 

частиц. 

Твёрдое тело – это агрегатное состояние вещества, 

характеризующееся стабильностью формы и характером теплового 

движения атомов, которые совершают малые колебания около 

положений равновесия. 

Температура (от лат. temperatura – надлежащее смешение, 

нормальное состояние) – скалярная физическая величина, 

характеризующая приходящуюся на одну степень свободы среднюю 

кинетическую энергию частиц макроскопической системы, 

находящейся в состоянии термодинамического равновесия. 

Тепловая энергия – форма энергии, связанная с движением 

атомов, молекул или других частиц, из которых состоит тело. 

Теплота может передаваться между телами с помощью 

теплопроводности, конвекции или излучения. 

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – 

раздел физики, изучающий соотношения и превращения теплоты и 

других форм энергии. В отдельные дисциплины выделились 

химическая термодинамика, изучающая физико-химические 

превращения, связанные с выделением или поглощением тепла, а 

также теплотехника. 

Термодинамические циклы – круговые процессы в 

термодинамике, то есть такие процессы, в которых начальные и 

конечные параметры, определяющие состояние рабочего тела 

(давление, объём, температура, энтропия), совпадают. 

Туннельный эффект, туннелирование – преодоление 

микрочастицей потенциального барьера в случае, когда её полная 

энергия меньше высоты барьера. 

Фазовый переход (фазовое превращение) в термодинамике – 

переход вещества из одной термодинамической фазы в другую при 

изменении внешних условий. 

Фермионы – элементарные частицы, из которых складывается 

вещество. К фермионам относят кварки, электрон, мюон, тау-

лептон, нейтрино. Фермионы характеризуются полуцелым 
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значением спина. Своё название получили в честь физика Энрико 

Ферми. 

Фонон – квазичастица, введённая советским учёным Игорем 

Таммом. Фонон представляет собой квант колебательного движения 

атомов кристалла. 

Фотон (от др.-греч. φως, род. пад. φωτός – «свет») – 

элементарная частица, квант электромагнитного излучения (в узком 

смысле – света). Это безмассовая частица, способная существовать 

только двигаясь со скоростью света. 

Фотоэффект — это испускание электронов вещества под 

действием света (и, вообще говоря, любого электромагнитного 

излучения). В конденсированных веществах (твёрдых и жидких) 

выделяют внешний и внутренний фотоэффект. 

Фотоэффект внутренний — перераспределение электронов 

по энергетическим состояниям в полупроводниках и диэлектриках, 

происходящее под действием излучений. Он проявляется в 

изменении концентрации носителей зарядов в среде и приводит к 

возникновению фотопроводимости или вентильного 

фотоэффекта. 

Цикл Карно — идеальный термодинамический цикл. 

Тепловая машина Карно, работающая по этому циклу, обладает 

максимальным КПД из всех машин, у которых максимальная и 

минимальная температуры осуществляемого цикла совпадают 

соответственно с максимальной и минимальной температурами 

цикла Карно. Состоит из 2 адиабатических и 2 изотермических 

процессов. 

Электрическая проводимость (электропроводность, 

проводимость) — это способность тела проводить электрический 

ток, а также физическая величина, характеризующая эту 

способность и обратная электрическому сопротивлению. В СИ 

единицей измерения электрической проводимости является сименс. 

Электромагнитное взаимодействие — одно из четырёх 

фундаментальных взаимодействий. Электромагнитное 

взаимодействие существует между частицами, обладающими 

электрическим зарядом. 

Электрон (от др.- греч. ἤλεκτρον — янтарь) — стабильная, 

отрицательно заряженная элементарная частица, одна из основных 

http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%BF%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F
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структурных единиц вещества. Является фермионом (то есть имеет 

полуцелый спин). 

Электронное нейтрино (обозначаются как νe) — 

элементарная частица, являющаяся одним из трёх видов нейтрино. 

Вместе с электроном составляет первое поколение лептонов. 

Первоначально, словом «нейтрино» называли именно электронную 

разновидность нейтрино. 

Элементарная частица — собирательный термин, 

относящийся к микрообъектам в субъядерном масштабе, которые 

невозможно расщепить на составные части. 

Энергия — скалярная физическая величина, являющаяся 

единой мерой различных форм движения материи и мерой перехода 

движения материи из одних форм в другие. Понятие введено 

Готфридом Вильгельмом Лейбницем. 

Энтропия (от греч. εντροπία — поворот, превращение) в 

естественных науках — мера порядка системы, состоящей из 

единого элемента. В частности, в статистической физике — мера 

вероятности осуществления конкретного макроскопического 

состояния. 

Эффект Мёссбауэра или ядерный гамма-резонанс, 

открытый в 1957 или 1958 году Рудольфом Мёссбауэром в 

Институте им. М. Планка в Гейдельберге (ФРГ), состоит в 

резонансном испускании или поглощении гамма-фотонов без 

изменения фононного спектра излучателя или поглотителя 

излучения соответственно. 

Эффект Комптона (Комптон-эффект) — явление изменения 

длины волны электромагнитного излучения вследствие рассеивания 

его электронами. 

Ядро атомное — центральная часть атома, в которой 

сосредоточена основная его масса (более 99,9 %). 

 

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ 
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Зона энергетическая 

- Бриллюэна 83 

- - валентная 84 

- - запрещенная 84 
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Изоэнтропия 46 
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- узла 72 

Калибровочные бозоны 105 

Каон 109 

Кварк 103 
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61 
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Лептоны 108 

Масса  

- молярная 6 
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Мезон 106 

Метод исследования 

- статистический 22 

- термодинамический 30, 34 

Метастабильное состояние 30 

Моль 6 

Монокристалл 62 

Мюонное нейтрино 106 

Мюоны 109 

Нагреватель 37 

Направление в кристалле 72 

Начало термодинамики  

- второе 37 

- первое 30 

- третье 34, 55 

Нейтрино 106 

Неравенство Клаузиуса 42 

Объем молярный 6 

Очарование 103 

Пар 

- насыщенный 30 
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Параметры состояния 

системы  

термодинамической 4 
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Переход электронно-
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Пион 109 

Позитрон 108 
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- изохорический 31 

- изотермический 32 
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- круговой (цикл) 36 

- термодинамический 35 
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- - обратимый 35 
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термодинамическое 36 

Распределение  

- Ферми-Дирака 91 

- Максвелла 24 

- Больцмана 24 

Решетка Браве 68 

Решеточная теплопроводность 

79 

Свободная энергия 57 

Силы связи в кристаллах 64 

Сингонии 70 

Система замкнутая 45 

Скорость 

- наиболее вероятная 24 

- среднеквадратичная 22 

Состояние 4 

- равновесное 5  

Спин электрона 105 

Стандартная модель 111 

Статистика  

- квантовая 58 

- Ферми-Дирака 58 

Странность 103 

Структура кристаллической 

решетки 68 

Теория твердых тел зонная 80 

Тепловые свойства 

кристаллов 74 

Термодинамика 30 

Термодинамическая шкала 

температур 46 

Тепловое равновесие 54 

Теплоемкость 14 

- газов 14 

- молярная 14 

- удельная 14 

Термодинамики 

- первое начало 30 

- второе начало 37 

- третье начало 34 ,55 

Тетракварки 111 

Уравнение 

- адиабаты 20 

- Ван-дер-Ваальса 27, 29 

- изобары 5 

-изотермы 5 

- изохоры 5 

- Клайперона-Менделеева 6 

- основное молекулярно-  

  кинетической теории  

  идеальных газов 3 

- Пуассона 20 

Уровни акцепторные 99 

- энергетические 

- - возбуждения 99 

- - донорные 99 

- - основные 99 

- - примесные 99 

Фермион 106 

Физика молекулярная 4 

Флейворный лептонный заряд 

109 

Фотон 105 

Фундаментальные  

- взаимодействия 106 

- частицы 103 

Функция волновая 83 

Холодильник 37 

Цикл  
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- обратный 37 

- прямой 37 

- Карно  

- - обратимый 40 

- - прямой 40 

Экзотические  

- барионы 111 

- мезоны 111 

Элементарные частицы 102 

Энергия 

- внутренняя 12 

- - межмолекулярного 

     взаимодействия 4 

- Ферми 91 

Энтропия  41 

Ядро атома 102 

Ячейка элементарная 68
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