САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ ИМПЕРАТРИЦЫ ЕКАТЕРИНЫ II

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ В РОССИИ

On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 2. The mechanism of passivation and conditions of stable electrolysis

Ссылка для цитирования (ENG)

Gorlanov Evgeniy Sergeevich On the question of using solid electrodes in the electrolysis of cryolite-alumina melts. Part 2. The mechanism of passivation and conditions of stable electrolysis Proceedings of Irkutsk State Technical University. 2021. №1. pp. 108-121. https://vestirgtu.elpub.ru/jour/article/view/469/467

Авторы

Gorlanov Evgeniy Sergeevich

Журнал

Proceedings of Irkutsk State Technical University

Год

2021

Ключевые слова


Аннотация

The aim was to investigate the mechanism of passivation of polycrystalline cathodes and to justify experimentally the possibility of stable electrolysis when using solid electrodes. Under laboratory conditions, the mechanism of electrode passivation and the conditions for stable electrolysis were experimentally studied. To this end, the methods of X-ray phase analysis and electron-microscopic examination of the spent electrodes were employed. A study of the electrolysis of cryolite-alumina melts showed that, in the presence of surface micro- and microdefects on a solid cathode, a precipitate consisting of impurities and electrolyte components was gradually formed. Under the selected experimental conditions, the surface of carbon cathodes was passivated with a dense double-layer precipitate of CaB6 and electrolyte components. Using the example of a carbon cathode containing both metallic titanium and titanium oxides, a method for eliminating surface microdefects is presented. This method consists in electrochemical borating of a carbon-titanium cathode. The conducted spectral electron microscopic and energy-dispersive analysis found that, during a 45-hour laboratory experiment at 980 °C and under a current density of 0.7 A/cm2, the inhomogeneous surface of the cathode was homogenized with a titanium diboride layer. At stable electrolysis parameters, an aluminum layer is electrodeposited on the cathode. A complex analysis of the electrolysis conditions, the appearance of the initial and spent carbon cathodes, and the data of analytical studies confirmed that micro- and macrodefects of the electrode cause the formation of a dense layer of deposits on the cathode. The established mechanism of passivation of a carbon cathode as a polycrystalline product can be applied to all composite electrodes, including those based on titanium diboride. A logical condition for the practical application of solid cathodes is the development of an electrolysis process with continuous surface reconditioning to decrease the chemical inhomogeneity and microdefects of the surface across the entire technological sequence.