The paper presents a study of an intelligent system for personnel positioning, transport, and equipment monitoring in the mining industry using convolutional neural network (CNN) and OpenPose technology. The proposed framework operates through a three-stage pipeline: OpenPose-based skeleton extraction from surveillance video streams, capturing 18 key body joints at 30fps; multimodal feature fusion, combining skeletal key points and proximity sensor data to achieve environmental context awareness and obtain relevant feature values; and hierarchical pose alert, using attention-enhanced bidirectional LSTM (trained on 5000 annotated fall instances) for fall warning. The experiment conducted demonstrated that the combined use of the aforementioned technologies allows the system to determine the location and behavior of personnel, calculate the distance to hazardous areas in real time, and analyze personnel postures to identify possible risks such as falls or immobility. The system’s capacity to track the location of vehicles and equipment enhances operational efficiency, thereby mitigating the risk of accidents. Additionally, the system provides real-time alerts, identifying abnormal behavior, equipment malfunctions, and safety hazards, thus promoting enhanced mine management efficiency, improved safe working conditions, and a reduction in accidents.